Solveeit Logo

Question

Question: Prove that the locus of the center of a circle, which intercepts a chord of a given length \[2a\] on...

Prove that the locus of the center of a circle, which intercepts a chord of a given length 2a2a on the axis of xx and passes through a given point on the axis of yy distant bb from the origin, is the curve
x22yb+b2=a2{{x}^{2}}-2yb+{{b}^{2}}={{a}^{2}}
Trace this parabola.

Explanation

Solution

Hint: First, find the locus by considering the given condition in the coordinate plane. Then compare it with parabola (xx1)2=4a(yy1){{\left( x-{{x}_{1}} \right)}^{2}}=4a\left( y-{{y}_{1}} \right)

Complete step-by-step answer:
Let the center of the circle be (h,k)\left( h,k \right) whose xx intercept is equal to 2a2aand passes through (a,b)\left( a,b \right) on the yy axis.
Length of chord AB=2aAB=2a.


As (h,k)\left( h,k \right) is center and axis on circumference.
Therefore, OC=radius = rOC=\text{radius = }r
By distance formula,
OC=(x2x1)2+(y2y1)2OC=\sqrt{{{\left( {{x}_{2}}-{{x}_{1}} \right)}^{2}}+{{\left( {{y}_{2}}-{{y}_{1}} \right)}^{2}}}
r=(h0)2+(kb)2r=\sqrt{{{\left( h-0 \right)}^{2}}+{{\left( k-b \right)}^{2}}}
Squaring both sides,
We get r2=h2+(kb)2....(i){{r}^{2}}={{h}^{2}}+{{\left( k-b \right)}^{2}}....\left( i \right)
Construct ODOD which is perpendicular to ABAB.
As OAOA and OBOB are the radius of the circle.
Therefore, OA=OB=r....(ii)OA=OB=r....\left( ii \right)
Hence, ΔOAB\Delta OAB is an isosceles triangle.
Therefore, we get AD=DB=a....(iii)AD=DB=a....\left( iii \right)
Now by Pythagoras theorem,
AD2+DO2=AO2A{{D}^{2}}+D{{O}^{2}}=A{{O}^{2}}
a2+k2=r2[From equation (ii)and(iii)]{{a}^{2}}+{{k}^{2}}={{r}^{2}}\left[ \text{From equation }\left( ii \right)\text{and}\left( iii \right) \right]
a2+k2=h2+(kb)2[From equation (i)]\Rightarrow {{a}^{2}}+{{k}^{2}}={{h}^{2}}+{{\left( k-b \right)}^{2}}\left[ \text{From equation }\left( i \right) \right]
Also, (ab)(a+b)=a2b2\left( a-b \right)\left( a+b \right)={{a}^{2}}-{{b}^{2}}
Rearranging the equation we get,
a2+k2=h2+k22b+b2\Rightarrow {{a}^{2}}+{{k}^{2}}={{h}^{2}}+{{k}^{2}}-2b+{{b}^{2}}
Or, h22bk+b2=a2{{h}^{2}}-2bk+{{b}^{2}}={{a}^{2}}
Replacing hh with xx and kk with yy to get locus.
x22yb+b2=a2\Rightarrow {{x}^{2}}-2yb+{{b}^{2}}={{a}^{2}}
Hence proved.
Tracing parabola,
x22yb+b2=a2{{x}^{2}}-2yb+{{b}^{2}}={{a}^{2}}
x2=2yb+a2b2{{x}^{2}}=2yb+{{a}^{2}}-{{b}^{2}}
x2=2b[y(b2a2)2b]{{x}^{2}}=2b\left[ y-\dfrac{\left( {{b}^{2}}-{{a}^{2}} \right)}{2b} \right]
Comparing with
(x0)2=4a[yy1]2{{\left( x-0 \right)}^{2}}=4a{{\left[ y-{{y}_{1}} \right]}^{2}}
\therefore Given parabola has vertex at [0,b2a22b]=(0,y1)\left[ 0,\dfrac{{{b}^{2}}-{{a}^{2}}}{2b} \right]=\left( 0,{{y}_{1}} \right)and focal length (a)=2b4=b2\left( a \right)=\dfrac{2b}{4}=\dfrac{b}{2}

Note: Always rearrange the equation to get standard form. Try to get into minimum variables by always taking use of andaxis.