Solveeit Logo

Question

Mathematics Question on Continuity and differentiability

Prove that the function f given by f(x)=x+1f(x)=|x+1|, x∈R is not differentiable at x=1.

Answer

The given function is f(x) = |x-1|, x∈R
It is known that a function f is differentiable at a point x=c in its domain if both
limh0\lim\limits_{h \to 0^-} f(c+h)f(c)h\frac {f(c+h)-f(c)}{h} and \lim\limits_{h \to 0^+}$$\frac {f(c+h)-f(c)}{h} are finite and equal
To check the differentiability of the given function at x=1,
consider the left hand limit of f at x=1
limh0\lim\limits_{h \to 0^-} f(1+h)f(1)h\frac {f(1+h)-f(1)}{h} = limh0\lim\limits_{h \to 0^-} 1+h111h\frac {|1+h-1|-|1-1|}{h}
=limh0\lim\limits_{h \to 0^-} h0h\frac {|h|-0}{h} = limh0\lim\limits_{h \to 0^-} hh\frac {-h}{h} (h<0     \implies |h|=-h)

Consider the right hand limit of f at x=1
limh0+\lim\limits_{h \to 0^+} f(c+h)f(c)h\frac {f(c+h)-f(c)}{h} = limh0+\lim\limits_{h \to 0^+} f(1+h)f(1)h\frac {f(1+h)-f(1)}{h}
=llimh0+\lim\limits_{h \to 0^+} 1+h111h\frac {|1+h-1|-|1-1|}{h}
=limh0+\lim\limits_{h \to 0^+} h0h\frac {|h|-0}{h} = limh0+\lim\limits_{h \to 0^+} h/h (h>0    \implies|h|=h)

Since the left and right hand limits of f at x=1 are not equal, f is not differentiable at x=1