Solveeit Logo

Question

Question: Prove that the expression \({\tan ^{ - 1}}x + {\cot ^{ - 1}}\left( {x + 1} \right) = {\tan ^{ - 1}}\...

Prove that the expression tan1x+cot1(x+1)=tan1(x2+x+1){\tan ^{ - 1}}x + {\cot ^{ - 1}}\left( {x + 1} \right) = {\tan ^{ - 1}}\left( {{x^2} + x + 1} \right).

Explanation

Solution

Hint: We need to prove that in the given expression the left hand side is equal to the right hand side. Use the basic inverse trigonometric identities involving tan1x{\tan ^{ - 1}}x and cot1(x+1){\cot ^{ - 1}}\left( {x + 1} \right) such that sum of these two is equal to π2\dfrac{\pi }{2} along with the basic formula involving addition and subtraction of two tan1entities{\tan ^{ - 1}}{\text{entities}} to get the proof.

Complete step-by-step answer:
Given equation is
tan1x+cot1(x+1)=tan1(x2+x+1){\tan ^{ - 1}}x + {\cot ^{ - 1}}\left( {x + 1} \right) = {\tan ^{ - 1}}\left( {{x^2} + x + 1} \right)
Now consider L.H.S
tan1x+cot1(x+1)\Rightarrow {\tan ^{ - 1}}x + {\cot ^{ - 1}}\left( {x + 1} \right)……….. (1)
As we know that cot1A+tan1A=π2{\cot ^{ - 1}}A + {\tan ^{ - 1}}A = \dfrac{\pi }{2}.
cot1A=π2tan1A\Rightarrow {\cot ^{ - 1}}A = \dfrac{\pi }{2} - {\tan ^{ - 1}}A
So, use this property in equation (1) we have,
tan1x+π2tan1(x+1)\Rightarrow {\tan ^{ - 1}}x + \dfrac{\pi }{2} - {\tan ^{ - 1}}\left( {x + 1} \right)
=tan1xtan1(x+1)+π2= {\tan ^{ - 1}}x - {\tan ^{ - 1}}\left( {x + 1} \right) + \dfrac{\pi }{2}
Now as we know that tan1Atan1B=tan1(AB1+AB){\tan ^{ - 1}}A - {\tan ^{ - 1}}B = {\tan ^{ - 1}}\left( {\dfrac{{A - B}}{{1 + AB}}} \right) so, use this property in above equation we have,
tan1(xx11+x(x+1))+π2\Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{x - x - 1}}{{1 + x\left( {x + 1} \right)}}} \right) + \dfrac{\pi }{2}
tan1(11+x+x2)+π2\Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{ - 1}}{{1 + x + {x^2}}}} \right) + \dfrac{\pi }{2}……….. (2)
Now as we know tan1Atan1(1A)=π2{\tan ^{ - 1}}A - {\tan ^{ - 1}}\left( {\dfrac{{ - 1}}{A}} \right) = \dfrac{\pi }{2}
tan1(1A)=tan1Aπ2\Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{ - 1}}{A}} \right) = {\tan ^{ - 1}}A - \dfrac{\pi }{2} So, use this property in equation (2) we have,
tan1(11+x+x2)+π2=tan1(1+x+x2)π2+π2\Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{ - 1}}{{1 + x + {x^2}}}} \right) + \dfrac{\pi }{2} = {\tan ^{ - 1}}\left( {1 + x + {x^2}} \right) - \dfrac{\pi }{2} + \dfrac{\pi }{2}
=tan1(1+x+x2)= {\tan ^{ - 1}}\left( {1 + x + {x^2}} \right)
= R.H.S
Hence Proved.
Note: Whenever we face such proving questions involving trigonometric identities the key point is simply to have the understanding of basic inverse trigonometric identities, some of them are mentioned above. The knowledge of these identities will help you get on the right track to reach the answer.