Question
Question: Prove that the expansion of \({{\left( 1-{{x}^{3}} \right)}^{n}}\) may be put into the form \({{\lef...
Prove that the expansion of (1−x3)n may be put into the form (1−x)3n+3nx(1−x)3n−2+1.23n(3n−3)x2(1−x)3n−4+……….
Solution
We will use only the first step of induction here. If this value becomes true then we can do the calculations better. We will also use the formula of binomial expansion is given by, (a+b)n=nC0anb0+nC1an−1b1+nC2an−2b2+……+nCna0bn or by, (a+b)n=an+nan−1b1+2!n(n−1)an−2b2+……+bn. The formula of nCr=r!(n−r)!n!, where n represents the total number of objects from which we have to choose and r represents the number of objects that are selected at a time.
Complete step-by-step answer :
Now, we need to prove the equation given by, (1−x3)n=(1−x)3n+3nx(1−x)3n−2+1.23n(3n−3)x2(1−x)3n−4+………(i).
Now, we will substitute n = 1 in equation (i). This is because we are using the first step of induction here which is substitution as n = 1. If the equation (i) gets true for n = 1 then, we can proceed with the next step. But we will only use the first step here. This thing should be noticed. Thus, we get
(1−x3)1=(1−x)3(1)+3(1)x(1−x)3(1)−2+1.23(1)(3(1)−3)x2(1−x)3(1)−4+……⇒1−x3=(1−x)3+3x(1−x)+0⇒1−x3=(1−x)3+3x(1−x)
By taking the power n terms on both the sides of the expression, we get the term (1−x3)n=[(1−x)3+3x(1−x)]n...(iii)
Now, we will multiply and divide the right hand side of equation (iii) by (1−x)3 and we get, [(1−x)3+3x(1−x)]n=[(1−x)3+3x(1−x)(1−x)3(1−x)3]n………(iv)
After this we will substitute the expression (iv) in equation (iii), we will get,
(1−x3)n=[(1−x)3(1−x)3[(1−x)3+3x(1−x)]]n⇒(1−x3)n=[(1−x)3(1−x)3(1−x)3+(1−x)33x(1−x)(1−x)3]n⇒(1−x3)n=[(1−x)3+(1−x)33x(1−x)(1−x)3]n
Here we can see that the term (1−x)3 is common in the right hand side. So, by taking out this term from the above equation we get,
(1−x3)n=[(1−x)3+(1+(1−x)33x(1−x))]n⇒(1−x3)n=(1−x)3n(1+(1−x)33x(1−x))n⇒(1−x3)n=(1−x)3n(1+3x(1−x)(1−x)−3)n
We will now apply the formula, (a+b)x(a+b)y=(a+b)x+y in the above expression. So, we get,
(1−x3)n=(1−x)3n[1+3x(1−x)1−3]n⇒(1−x3)n=(1−x)3n[1+3x(1−x)−2]n………(v)
Now, we will apply the binomial expansion formula, (a+b)n=an+nan−1b1+2!n(n−1)an−2b2+……+bn in the above expression by substituting a =1 and b = 3x(1−x)−2. So, w get,
[1+3x(1−x)−2]n=1n+n(1)n−1(3x(1−x)−2)+2!n(n−1)(1)n−2(3x(1−x)−2)2+……+(3x(1−x)−2)n⇒[1+3x(1−x)−2]n=1n+(3nx(1−x)−2)+2!n(n−1)9x2(1−x)−4+……+3nxn(1−x)−2n⇒[1+3x(1−x)−2]n=1+3nx(1−x)−2+2!n(n−1)9x2(1−x)−4+……+3nxn(1−x)−2n………(vi)
Now we will multiply equation (vi) by (1−x)3n on both sides. So, we get,