Solveeit Logo

Question

Question: Prove that the equation of circle in the\(z\)plane can be written in the form\(\alpha z\overline z +...

Prove that the equation of circle in thezzplane can be written in the formαzz+βz+βz+c=0\alpha z\overline z + \overline \beta z + \beta \overline z + c = 0. Deduce the equation of the line.
A. βz+βz+c=0\overline \beta z + \beta \overline z + c = 0
B. βzβz+c=0\overline \beta z - \beta \overline z + c = 0
C. βz+βzc=0\overline \beta z + \beta \overline z - c = 0
D. None of these

Explanation

Solution

Hint: Consider the standard form of circle in coordinate geometry then use basic formulas of complex numbers to convert it into complex form.

We know that, ifz=x+iyz = x + iythenz=xiy\overline z = x - iyandx=z+z2,y=zz2i,zz=z2=x2+y2x = \dfrac{{z + \overline z }}{2},y = \dfrac{{z - \overline z }}{{2i}},z\overline z = |z{|^2} = {x^2} + {y^2}. The standard equation of the circle isα(x2+y2)+2gx+2fy+c=0\alpha ({x^2} + {y^2}) + 2gx + 2fy + c = 0.We’ll use above mentioned formula to solve further as follows:

α(x2+y2)+2gx+2fy+c=0 α(zz)+g(z+z)+f(zzi)+c=0 [x2+y2=zz,z+z2=x,zz2i=y] α(zz)+g(z+z)if(zz)+c=0 α(zz)+(gif)z+(g+if)z+c=0 α(zz)+(β)z+(β)z+c=0 [β=gif,β=g+if] αzz+βz+βz+c=0  \alpha ({x^2} + {y^2}) + 2gx + 2fy + c = 0 \\\ \Rightarrow \alpha (z\overline z ) + g(z + \overline z ) + f(\dfrac{{z - \overline z }}{i}) + c = 0{\text{ }}[{x^2} + {y^2} = z\overline z ,\dfrac{{z + \overline z }}{2} = x,\dfrac{{z - \overline z }}{{2i}} = y] \\\ \Rightarrow \alpha (z\overline z ) + g(z + \overline z ) - if(z - \overline z ) + c = 0 \\\ \Rightarrow \alpha (z\overline z ) + (g - if)z + (g + if)\overline z + c = 0 \\\ \Rightarrow \alpha (z\overline z ) + (\overline \beta )z + (\beta )\overline z + c = 0{\text{ }}[\overline \beta = g - if,\beta = g + if] \\\ \Rightarrow \alpha z\overline z + \overline \beta z + \beta \overline z + c = 0 \\\

It is in the same form as the given equation. Now observe from the standard form of the circle that if we putα=0\alpha = 0then we’ll get the equation of a straight line. Hence puttingα=0\alpha = 0in the given equation we’ll getβz+βz+c=0\overline \beta z + \beta \overline z + c = 0. Hence option A is the correct option.

Note: The hack in this question was to observe that, what’s the relation between the equation of a circle and straight line in the coordinate plane.