Solveeit Logo

Question

Question: Prove that the area of the triangle inscribed in the parabola \[{y^2} = 4ax\] is \[\dfrac{1}{{8a}}\l...

Prove that the area of the triangle inscribed in the parabola y2=4ax{y^2} = 4ax is 18a(y1y2)(y2y3)(y3y1)\dfrac{1}{{8a}}\left| {\left( {{y_1} - {y_2}} \right)\left( {{y_2} - {y_3}} \right)\left( {{y_3} - {y_1}} \right)} \right| sq. units where y1,y2,y3{y_1},{y_2},{y_3} are the ordinates of its vertices.

Explanation

Solution

Hint : If the three vertices of a triangle are (a1,b1),(a2,b2),(a2,b2)\left( {{a_1},{b_1}} \right),\left( {{a_2},{b_2}} \right),\left( {{a_2},{b_2}} \right) then the area of the triangle is given as Area=12[a1(a2a3)+a2(a3a1)+a3(a1a2)]Area = \dfrac{1}{2}\left[ {{a_1}\left( {{a_2} - {a_3}} \right) + {a_2}\left( {{a_3} - {a_1}} \right) + {a_3}\left( {{a_1} - {a_2}} \right)} \right]
In this question the ordinated of its vertices is given to us so by assuming the abscissa of the vertices we will get vertices of the triangle and then we will substitute those vertices in the equation of the parabola by which we will find the area of the triangle which is inscribed in the parabola.

Complete step-by-step answer :
Given the equation of the parabola y2=4ax{y^2} = 4ax
Given y1,y2,y3{y_1},{y_2},{y_3} are the ordinated of its vertices of the triangle
Let x1,x2,x3{x_1},{x_2},{x_3} be the abscissa of its vertices
So we can write the vertices of the triangle will be (x1,y1),(x2,y2),(x3,y3)\left( {{x_1},{y_1}} \right),\left( {{x_2},{y_2}} \right),\left( {{x_3},{y_3}} \right)
Now we substitute the vertices of the triangle in the given parabola equation y2=4ax{y^2} = 4ax , we get

y12=4ax1 y22=4ax2 y32=4ax3  y_1^2 = 4a{x_1} \\\ y_2^2 = 4a{x_2} \\\ y_3^2 = 4a{x_3} \\\

Now we will find the area of the triangle for the vertices (x1,y1),(x2,y2),(x3,y3)\left( {{x_1},{y_1}} \right),\left( {{x_2},{y_2}} \right),\left( {{x_3},{y_3}} \right) as

{{x_1}}&{{y_1}}&1 \\\ {{x_2}}&{{y_2}}&1 \\\ {{x_3}}&{{y_3}}&1 \end{array}} \right|$$ Now we have already got $$y_1^2 = 4a{x_1},y_2^2 = 4a{x_2},y_3^2 = 4a{x_3}$$ , hence we can further write the area as $$area\Delta = \dfrac{1}{2}\left| {\begin{array}{*{20}{c}} {\dfrac{{y_1^2}}{{4a}}}&{{y_1}}&1 \\\ {\dfrac{{y_2^2}}{{4a}}}&{{y_2}}&1 \\\ {\dfrac{{y_3^2}}{{4a}}}&{{y_3}}&1 \end{array}} \right|$$ Take $$\dfrac{1}{{4a}}$$ as common from the first column of the matrix, so we can write

area\Delta = \dfrac{1}{2} \times \dfrac{1}{{4a}}\left| {\begin{array}{{20}{c}}
{y_1^2}&{{y_1}}&1 \\
{y_2^2}&{{y_2}}&1 \\
{y_3^2}&{{y_3}}&1
\end{array}} \right| \\
area\Delta = \dfrac{1}{{8a}}\left| {\begin{array}{
{20}{c}}
{y_1^2}&{{y_1}}&1 \\
{y_2^2}&{{y_2}}&1 \\
{y_3^2}&{{y_3}}&1
\end{array}} \right| \\

Nowbysolvingthematrix,wegetNow by solving the matrix, we get

\Rightarrow area\Delta = \dfrac{1}{{8a}}\left| {y_1^2\left( {{y_2} - {y_3}} \right) + y_2^2\left( {{y_1} - {y_3}} \right) + y_3^2\left( {{y_1} - {y_2}} \right)} \right| \\
= \dfrac{1}{{8a}}\left| {y_1^2{y_2} - y_1^2{y_3} + y_2^2{y_1} - y_2^2{y_3} + y_3^2{y_1} - y_3^2{y_2}} \right| \\

NowbyfurthersolvingtheequationbytakingcommonvariableswegetNow by further solving the equation by taking common variables we get’

\Rightarrow area\Delta = \dfrac{1}{{8a}}\left| {y_1^2{y_2} - y_1^2{y_3} - y_2^2{y_3} - y_3^2{y_2} + y_3^2{y_1} + y_2^2{y_1}} \right| \\
= \dfrac{1}{{8a}}\left| {y_1^2\left( {{y_2} - {y_3}} \right) - {y_2}{y_3}\left( {{y_2} - {y_3}} \right) - {y_1}\left( {y_3^2 - y_2^2} \right)} \right| \\
= \dfrac{1}{{8a}}\left| {y_1^2\left( {{y_2} - {y_3}} \right) - {y_2}{y_3}\left( {{y_2} - {y_3}} \right) - {y_1}\left( {{y_3} - {y_2}} \right)\left( {{y_3} + {y_2}} \right)} \right| \\

Now we take $$\left( {{y_2} - {y_3}} \right)$$ as common term, hence we get $$area\Delta = \dfrac{1}{{8a}}\left( {{y_2} - {y_3}} \right)\left| {y_1^2 - {y_2}{y_3} - {y_1}\left( {{y_3} + {y_2}} \right)} \right|$$ Now on further solving this determinant equation, we get

\Rightarrow area\Delta = \dfrac{1}{{8a}}\left( {{y_2} - {y_3}} \right)\left| {y_1^2 - {y_2}{y_3} - {y_1}{y_3} - {y_1}{y_2}} \right| \\
= \dfrac{1}{{8a}}\left( {{y_2} - {y_3}} \right)\left| {y_1^2 - {y_1}{y_3} - {y_2}{y_3} - {y_1}{y_2}} \right| \\
= \dfrac{1}{{8a}}\left( {{y_2} - {y_3}} \right)\left| {{y_1}\left( {{y_1} - {y_2}} \right) - {y_3}\left( {{y_1} - {y_2}} \right)} \right| \\
= \dfrac{1}{{8a}}\left[ {\left( {{y_1} - {y_3}} \right)\left( {{y_2} - {y_3}} \right)\left( {{y_1} - {y_2}} \right)} \right] \\

Hence proved the area of the triangle inscribed in the parabola $${y^2} = 4ax$$ is $$ = \dfrac{1}{{8a}}\left| {\left( {{y_1} - {y_2}} \right)\left( {{y_2} - {y_3}} \right)\left( {{y_3} - {y_1}} \right)} \right|$$ sq. units **So, the correct answer is “ $${y^2} = 4ax$$ is $$ = \dfrac{1}{{8a}}\left| {\left( {{y_1} - {y_2}} \right)\left( {{y_2} - {y_3}} \right)\left( {{y_3} - {y_1}} \right)} \right|$$ sq. units”.** **Note** : Abscissa is the distance of a point from the y-axis on the graph whereas ordinate is the distance of a point from the x-axis on the graph. In this question ordinate is the distance of a point from the x-axis is given so we will assume three Abscissa on the basis of the ordinate.