Solveeit Logo

Question

Question: Prove that the area enclosed between two parabolas \[{{\text{y}}^2}{\text{ = 4ax}}\] and \[{{\text{x...

Prove that the area enclosed between two parabolas y2 = 4ax{{\text{y}}^2}{\text{ = 4ax}} and x2 = 4ay{{\text{x}}^2}{\text{ = 4ay}} is 16a23\dfrac{{{\text{16}}{{\text{a}}^{\text{2}}}}}{{\text{3}}}

Explanation

Solution

Here, we find the point of intersection of two given curves by using the given data. Then we find the enclosed area of two parabolas using an integration formula. Finally we get the required answer.

Formula used: The integral formula is
xndx = xn + 1n + 1+C\int {{{\text{x}}^{\text{n}}}{\text{dx}}} {\text{ = }}\dfrac{{{{\text{x}}^{{\text{n + 1}}}}}}{{{\text{n + 1}}}} + {\text{C}}, where C{\text{C}} is a constant of integration.

Complete step-by-step solution:
It is given that that question stated as the equations of the parabolas are
y2 = 4ax{{\text{y}}^2}{\text{ = 4ax}}………………….(1)(1)
x2 = 4ay{{\text{x}}^2}{\text{ = 4ay}}………………….(2)(2)
Here, we have to first find the area of intersection of the two curves:
So that we have to find out the point of intersection of the two curves are
Now from equation (2)(2) we can write it as,
x24a = y\Rightarrow \dfrac{{{{\text{x}}^{\text{2}}}}}{{{\text{4a}}}}{\text{ = y}}
On squaring on both sides,
(x24a)2 = y2\Rightarrow {\left( {\dfrac{{{{\text{x}}^{\text{2}}}}}{{{\text{4a}}}}} \right)^2}{\text{ = }}{{\text{y}}^2}
Substitute y2{{\text{y}}^2} value,
(x24a)2 = 4ax\Rightarrow {\left( {\dfrac{{{{\text{x}}^{\text{2}}}}}{{{\text{4a}}}}} \right)^2}{\text{ = 4ax}}
(x416a2) = 4ax\Rightarrow \left( {\dfrac{{{{\text{x}}^4}}}{{{\text{16}}{{\text{a}}^2}}}} \right){\text{ = 4ax}}
On taking cross multiplying it,
x4 = 64a3x\Rightarrow {{\text{x}}^{\text{4}}}{\text{ = 64}}{{\text{a}}^{\text{3}}}{\text{x}}
On equating this, we get
x464a3x=0\Rightarrow {{\text{x}}^{\text{4}}} - {\text{64}}{{\text{a}}^{\text{3}}}{\text{x}} = 0
Taking out the common term,
x (x3 - 64a3) = 0\Rightarrow {\text{x (}}{{\text{x}}^{\text{3}}}{\text{ - 64}}{{\text{a}}^{\text{3}}}{\text{) = 0}}
Equate to zero, we get
x = 0{\text{x = 0}}, x3 = 64a3{{\text{x}}^{\text{3}}}{\text{ = 64}}{{\text{a}}^{\text{3}}}
x = 0{\text{x = 0}}, x = 4a{\text{x = 4a}}
Also, we have to find out y{\text{y}} values
From equation(1)(1),
y24a = x\Rightarrow \dfrac{{{{\text{y}}^{\text{2}}}}}{{{\text{4a}}}}{\text{ = x}}
Squaring on both sides,
(y24a)2 = x2\Rightarrow {\left( {\dfrac{{{{\text{y}}^{\text{2}}}}}{{{\text{4a}}}}} \right)^2}{\text{ = }}{{\text{x}}^2}
Substitute x2{{\text{x}}^2} value,
y416a2 = 4ay\Rightarrow \dfrac{{{{\text{y}}^{\text{4}}}}}{{{\text{16}}{{\text{a}}^{\text{2}}}}}{\text{ = 4ay}}
Cross multiplying it,
y4 = 64a3y\Rightarrow {{\text{y}}^{\text{4}}}{\text{ = 64}}{{\text{a}}^{\text{3}}}{\text{y}}
On equating we get
y4 - 64a3y=0\Rightarrow {{\text{y}}^{\text{4}}}{\text{ - 64}}{{\text{a}}^{\text{3}}}{\text{y}} = 0
Taking out the common term,
y (y3 - 64a3) = 0\Rightarrow {\text{y (}}{{\text{y}}^{\text{3}}}{\text{ - 64}}{{\text{a}}^{\text{3}}}{\text{) = 0}}
y = 0{\text{y = 0}}, y3 = 64a3{{\text{y}}^{\text{3}}}{\text{ = 64}}{{\text{a}}^{\text{3}}}
y = 0{\text{y = 0}}, y = 4a{\text{y = 4a}}
The point of intersection of these two curves are (0,0){\text{(0,0)}} and (4a,4a){\text{(4a,4a)}}

The required areas is A = (area under parabolay2 = 4ax{{\text{y}}^2}{\text{ = 4ax}}) – (area under parabolax2 = 4ay{{\text{x}}^2}{\text{ = 4ay}})
From equation (1),
y = 4ax{\text{y = }}\sqrt {{\text{4ax}}}
From equation (2),
y = x24a{\text{y = }}\dfrac{{{{\text{x}}^{\text{2}}}}}{{{\text{4a}}}}
Here the limit values are(0, 4a)\left( {0,{\text{ }}4a} \right)
The enclosed area A = 04a(y2 - y1)dx\int\limits_{\text{0}}^{{\text{4a}}} {{\text{(}}{{\text{y}}_{\text{2}}}{\text{ - }}{{\text{y}}_{\text{1}}}{\text{)dx}}}
A = 04a4axdx - 04ax24adx{\text{A = }}\int\limits_{\text{0}}^{{\text{4a}}} {\sqrt {{\text{4ax}}} {\text{dx - }}} \int\limits_{\text{0}}^{{\text{4a}}} {\dfrac{{{{\text{x}}^{\text{2}}}}}{{{\text{4a}}}}{\text{dx}}}
On splitting the term and we get,
=04a2ax12dx - 04ax24adx=\int\limits_{\text{0}}^{{\text{4a}}} {{\text{2}}\sqrt {\text{a}} {{\text{x}}^{\dfrac{{\text{1}}}{{\text{2}}}}}{\text{dx}}} {\text{ - }}\int\limits_{\text{0}}^{{\text{4a}}} {\dfrac{{{{\text{x}}^{\text{2}}}}}{{{\text{4a}}}}{\text{dx}}}
On integrating this we get, (using integration formula)
=2a(2x323)04a - (x312a)04a={\text{2}}\sqrt{\text{a}}\left({\dfrac{{{\text{2}}{{\text{x}}^{\dfrac{{\text{3}}}{{\text{2}}}}}}}{{\text{3}}}} \right)_{\text{0}}^{{\text{4a}}}{\text{ - }}\left( {\dfrac{{{{\text{x}}^{\text{3}}}}}{{{\text{12a}}}}} \right)_{\text{0}}^{{\text{4a}}}
Applying upper and lower limit in the x{\text{x}} term we get,
=4a3(4a32-0) - ((4a)312a)=\dfrac{{{\text{4}}\sqrt{\text{a}}}}{{\text{3}}}{\text{(4}}{{\text{a}}^{\dfrac{{\text{3}}}{{\text{2}}}}}{\text{-0) - }}\left( {\dfrac{{{{{\text{(4a)}}}^{\text{3}}}}}{{{\text{12a}}}}} \right)
After applying limit, we have,
4a3(8a32) - 64a312a\Rightarrow\dfrac{{{\text{4}}\sqrt{\text{a}}}}{{\text{3}}}{\text{(8}}{{\text{a}}^{\dfrac{{\text{3}}}{{\text{2}}}}}{\text{) - }}\dfrac{{{\text{64}}{{\text{a}}^{\text{3}}}}}{{1{\text{2a}}}}
On simplifying this we get,
=323a2-16a23=\dfrac{{{\text{32}}}}{{\text{3}}}{{\text{a}}^{\text{2}}}{\text{-}}\dfrac{{{\text{16}}{{\text{a}}^{\text{2}}}}}{{\text{3}}}
Take out the common term,
=a23(32 - 16)= \dfrac{{{{\text{a}}^{\text{2}}}}}{{\text{3}}}{\text{(32 - 16)}}
A = 16a23{\text{A = }}\dfrac{{{\text{16}}{{\text{a}}^{\text{2}}}}}{{\text{3}}} Square units

\thereforeThe enclosed area is  = 16a23{\text{ = }}\dfrac{{{\text{16}}{{\text{a}}^{\text{2}}}}}{{\text{3}}} square units

Note: The parabola passes through the origin since (0,0)(0,0) satisfies the equation y2 = 4ax{{\text{y}}^2}{\text{ = 4ax}}
The parabola is the plane curve which is approximately ‘U’ shaped and mirror-symmetrical.
The curve y2 = 4ax{{\text{y}}^2}{\text{ = 4ax}} is symmetrical about x-axis and hence x{\text{x}}-axis or y = 0{\text{y = 0}} is the axis of the parabola y2 = 4ax{{\text{y}}^2}{\text{ = 4ax}}
The parabola is symmetric about its axis.
Also, the given axis passing through the focus and the vertex