Solveeit Logo

Question

Question: Prove that \({\tan70^0} - \tan {20^0} = 2\tan {50^0}\)...

Prove that tan700tan200=2tan500{\tan70^0} - \tan {20^0} = 2\tan {50^0}

Explanation

Solution

Hint: We can rewrite tan(700)\tan \left( {{{70}^0}} \right) as tan(500+200)\tan \left( {{{50}^0} + {{20}^0}} \right), right? For the same, let’s apply tan(a+b) formula and equate it to tan(700)\tan \left( {{{70}^0}} \right). Then, with simple simplification we’ll get the answer.

Complete answer:

We know that tan (a + b) = tana+tanb1tanatanb\dfrac{{\tan a + \tan b}}{{1 - \tan a\tan b}}

tan(700)=tan(500+200)\tan \left( {{{70}^0}} \right) = \tan \left( {{{50}^0} + {{20}^0}} \right)

So using above formulae

tan700=tan500+tan2001tan500tan200{\text{tan7}}{{\text{0}}^0} = \dfrac{{\tan {{50}^0} + \tan {{20}^0}}}{{1 - \tan {{50}^0}\tan {{20}^0}}}

Or  if we cross multiply we get{\text{ if we cross multiply we get}}

tan700tan700tan500tan200=tan500+tan200{\text{tan7}}{0^0} - \tan {70^0}\tan {50^0}\tan {20^0} = \tan {50^0} + \tan {20^0}

Or {\text{ tan7}}{0^0} - \tan {20^0} = \tan {50^0} + \tan {70^0}\tan {50^0}\tan {20^0}.........\left\\{ 1 \right\\}

Now, let's solve for tan700tan500tan200\tan {70^0}\tan {50^0}\tan {20^0}

We can write it as tan500tan(900200)tan200\tan {50^0}\tan ({90^0} - {20^0})\tan {20^0}

Which is equal to tan500cot200tan200=tan500\tan {50^0}\cot {20^0}\tan {20^0} = \tan {50^0}

Hence equation 1 gets changed to

tan700tan200=tan500+tan500=2tan500{\text{tan7}}{0^0} - \tan {20^0} = \tan {50^0} + \tan {50^0} = 2\tan {50^0}

Hence proved.

Note - Always start such types of proofs by thinking how we can break the LHS part in terms of angles in RHS then proceed further with the respective formulas.