Question
Question: Prove that: \[tan4x = \dfrac{{4\tan x(1 - {{\tan }^2}x)}}{{1 - 6{{\tan }^2}x + {{\tan }^4}x}}\]...
Prove that:
tan4x=1−6tan2x+tan4x4tanx(1−tan2x)
Solution
To solve this problem we are to use a trigonometric result of tan2x=1−tan2x2tanx to get through the result. First we write tan4x=tan[2(2x)] so, that the formula of tan2x can be used, now again we substitute the value of tan2x , and simplify to find the solution.
Complete step by step Answer:
We are given to prove tan4x=1−6tan2x+tan4x4tanx(1−tan2x)
We have our L.H.S as,
tan4x=tan[2(2x)]
Now as per the formula of tan2x we get, tan2x=1−tan2x2tanx
Then we can write,
=1−tan22x2tan2x
Again using the same formula tan2x=1−tan2x2tanx, we get,
=1−(1−tan2x2tanx)22(1−tan2x2tanx)
On Simplifying, we get,
=1−(1−tan2x)24tan2x(1−tan2x4tanx)
On taking LCM of the denominator, we get,
=(1−tan2x)2(1−tan2x)2−4tan2x(1−tan2x4tanx)
Transforming division into multiplication, we get,
=1−tan2x4tanx×(1−tan2x)2−4tan2x(1−tan2x)2
On Cancelling out common terms we get,
=(1−tan2x)2−4tan2x4tanx(1−tan2x)
On Elaborating, we get,
=1−2tan2x+tan4x−4tan2x4tanx(1−tan2x)
=1−6tan2x+tan4x4tanx(1−tan2x)(R.H.S)
So, we have, L.H.S = R.H.S.
i.e., tan4x=1−6tan2x+tan4x4tanx(1−tan2x)
Hence, our result is proved.
Note: The result tan2x=1−tan2x2tanx can be proved in the following way,
Use
tanx=cosxsinx,sin2x=2sinxcosx and cos2x=cos2x−sin2x, for the right hand side expression
Explanation:
1−tan2x2tanx
On substituting the value of tanx we get,
=1−(cosxsinx)22(cosxsinx)
On simplification we get,
=1−cos2xsin2xcosx2sinx
On taking LCM in the denominator we get,
=cos2xcos2x−sin2xcosx2sinx
On further simplification we get,
=cos2x−sin2x2sinxcosx
On using sin2x=2sinxcosx and cos2x=cos2x−sin2x, we get,
=cos2xsin2x
On using, tanx=cosxsinx, we get,
=tan2x
Hence, tan2x=1−tan2x2tanx