Solveeit Logo

Question

Question: Prove that: \[tan4x = \dfrac{{4\tan x(1 - {{\tan }^2}x)}}{{1 - 6{{\tan }^2}x + {{\tan }^4}x}}\]...

Prove that:
tan4x=4tanx(1tan2x)16tan2x+tan4xtan4x = \dfrac{{4\tan x(1 - {{\tan }^2}x)}}{{1 - 6{{\tan }^2}x + {{\tan }^4}x}}

Explanation

Solution

To solve this problem we are to use a trigonometric result of tan2x=2tanx1tan2xtan2x = \dfrac{{2\tan x}}{{1 - {{\tan }^2}x}} to get through the result. First we write tan4x=tan[2(2x)]tan4x = \tan [2(2x)] so, that the formula of tan2x\tan 2x can be used, now again we substitute the value of tan2xtan2x , and simplify to find the solution.

Complete step by step Answer:

We are given to prove tan4x=4tanx(1tan2x)16tan2x+tan4xtan4x = \dfrac{{4\tan x(1 - {{\tan }^2}x)}}{{1 - 6{{\tan }^2}x + {{\tan }^4}x}}
We have our L.H.S as,
tan4x=tan[2(2x)]tan4x = \tan [2(2x)]
Now as per the formula of tan2xtan2x we get, tan2x=2tanx1tan2xtan2x = \dfrac{{2\tan x}}{{1 - {{\tan }^2}x}}
Then we can write,
=2tan2x1tan22x= \dfrac{{2\tan 2x}}{{1 - {{\tan }^2}2x}}
Again using the same formula tan2x=2tanx1tan2xtan2x = \dfrac{{2\tan x}}{{1 - {{\tan }^2}x}}, we get,
=2(2tanx1tan2x)1(2tanx1tan2x)2= \dfrac{{2\left( {\dfrac{{2\tan x}}{{1 - {{\tan }^2}x}}} \right)}}{{1 - {{\left( {\dfrac{{2\tan x}}{{1 - {{\tan }^2}x}}} \right)}^2}}}
On Simplifying, we get,
=(4tanx1tan2x)14tan2x(1tan2x)2= \dfrac{{\left( {\dfrac{{4\tan x}}{{1 - {{\tan }^2}x}}} \right)}}{{1 - \dfrac{{4{{\tan }^2}x}}{{{{(1 - {{\tan }^2}x)}^2}}}}}
On taking LCM of the denominator, we get,
=(4tanx1tan2x)(1tan2x)24tan2x(1tan2x)2= \dfrac{{\left( {\dfrac{{4\tan x}}{{1 - {{\tan }^2}x}}} \right)}}{{\dfrac{{{{(1 - {{\tan }^2}x)}^2} - 4{{\tan }^2}x}}{{{{(1 - {{\tan }^2}x)}^2}}}}}
Transforming division into multiplication, we get,
=4tanx1tan2x×(1tan2x)2(1tan2x)24tan2x= \dfrac{{4\tan x}}{{1 - {{\tan }^2}x}} \times \dfrac{{{{(1 - {{\tan }^2}x)}^2}}}{{{{(1 - {{\tan }^2}x)}^2} - 4{{\tan }^2}x}}
On Cancelling out common terms we get,
=4tanx(1tan2x)(1tan2x)24tan2x= \dfrac{{4\tan x(1 - {{\tan }^2}x)}}{{{{(1 - {{\tan }^2}x)}^2} - 4{{\tan }^2}x}}
On Elaborating, we get,
=4tanx(1tan2x)12tan2x+tan4x4tan2x= \dfrac{{4\tan x(1 - {{\tan }^2}x)}}{{1 - 2{{\tan }^2}x + {{\tan }^4}x - 4{{\tan }^2}x}}
=4tanx(1tan2x)16tan2x+tan4x= \dfrac{{4\tan x(1 - {{\tan }^2}x)}}{{1 - 6{{\tan }^2}x + {{\tan }^4}x}}(R.H.S)
So, we have, L.H.S = R.H.S.
i.e., tan4x=4tanx(1tan2x)16tan2x+tan4xtan4x = \dfrac{{4\tan x(1 - {{\tan }^2}x)}}{{1 - 6{{\tan }^2}x + {{\tan }^4}x}}
Hence, our result is proved.

Note: The result tan2x=2tanx1tan2xtan2x = \dfrac{{2\tan x}}{{1 - {{\tan }^2}x}} can be proved in the following way,
Use
tanx=sinxcosxtanx = \dfrac{{sinx}}{{\cos x}},sin2x=2sinxcosxsin2x = 2sinxcosx and cos2x=cos2xsin2xcos2x = co{s^2}x - si{n^2}x, for the right hand side expression
Explanation:
2tanx1tan2x\dfrac{{2tanx}}{{1 - {{\tan }^2}x}}
On substituting the value of tanx we get,
=2(sinxcosx)1(sinxcosx)2= \dfrac{{2\left( {\dfrac{{\sin x}}{{\cos x}}} \right)}}{{1 - {{\left( {\dfrac{{\sin x}}{{\cos x}}} \right)}^2}}}
On simplification we get,
=2sinxcosx1sin2xcos2x= \dfrac{{\dfrac{{2\sin x}}{{\cos x}}}}{{1 - \dfrac{{{{\sin }^2}x}}{{{{\cos }^2}x}}}}
On taking LCM in the denominator we get,
=2sinxcosxcos2xsin2xcos2x= \dfrac{{\dfrac{{2\sin x}}{{\cos x}}}}{{\dfrac{{{{\cos }^2}x - {{\sin }^2}x}}{{{{\cos }^2}x}}}}
On further simplification we get,
=2sinxcosxcos2xsin2x= \dfrac{{2\sin x\cos x}}{{{{\cos }^2}x - {{\sin }^2}x}}
On using sin2x=2sinxcosxsin2x = 2sinxcosx and cos2x=cos2xsin2xcos2x = co{s^2}x - si{n^2}x, we get,
=sin2xcos2x= \dfrac{{\sin 2x}}{{\cos 2x}}
On using, tanx=sinxcosxtanx = \dfrac{{sinx}}{{\cos x}}, we get,
=tan2x= \tan 2x
Hence, tan2x=2tanx1tan2xtan2x = \dfrac{{2\tan x}}{{1 - {{\tan }^2}x}}