Solveeit Logo

Question

Question: Prove that \(\tan \left( \arctan \dfrac{m}{n}-\arctan \dfrac{m-n}{m+n} \right)=1\)...

Prove that tan(arctanmnarctanmnm+n)=1\tan \left( \arctan \dfrac{m}{n}-\arctan \dfrac{m-n}{m+n} \right)=1

Explanation

Solution

Hint: Put arctanmn=x,arctanmnm+n=y\arctan \dfrac{m}{n}=x,\arctan \dfrac{m-n}{m+n}=y and use the identity tan(xy)=tanxtany1+tanxtany\tan \left( x-y \right)=\dfrac{\tan x-\tan y}{1+\tan x\tan y}. Use tan(arctanx)=x\tan \left( \arctan x \right)=x. Simplify to get the result. Alternatively, you can use the identity arctanxarctany=nπ+arctanxy1+xy,nZ\arctan x-\arctan y=n\pi +\arctan \dfrac{x-y}{1+xy},n\in \mathbb{Z}, where n is suitably chosen integer. “n” is chosen so that the sum nπ+arctanxy1+xyn\pi +\arctan \dfrac{x-y}{1+xy} is within the interval (π,π)\left( -\pi ,\pi \right).

Complete step-by-step answer:
Let arctanmn=x\arctan \dfrac{m}{n}=x and arctanmnm+n=y\arctan \dfrac{m-n}{m+n}=y.
Hence we have LHS = tan(x-y).
We know that tan(xy)=tanxtany1+tanxtany\tan \left( x-y \right)=\dfrac{\tan x-\tan y}{1+\tan x\tan y}
Using the above identity, we get
LHS =tanxtany1+tanxtany=\dfrac{\tan x-\tan y}{1+\tan x\tan y}.
Reverting to original variables, we get
LHS =tan(arctanmn)tan(arctanmnm+n)1+tan(arctanmn)tan(arctanmnm+n)=\dfrac{\tan \left( \arctan \dfrac{m}{n} \right)-\tan \left( \arctan \dfrac{m-n}{m+n} \right)}{1+\tan \left( \arctan \dfrac{m}{n} \right)\tan \left( \arctan \dfrac{m-n}{m+n} \right)}
We know that tan(arctanx)=x\tan \left( \arctan x \right)=x
Using the above identity, we get
LHS =mnmnm+n1+mnmnm+n=\dfrac{\dfrac{m}{n}-\dfrac{m-n}{m+n}}{1+\dfrac{m}{n}\dfrac{m-n}{m+n}}
Multiplying numerator and denominator by n(m+n), we get
LHS
=mnn(m+n)mnm+nn(m+n)n(m+n)+mnmnm+nn(m+n) =m(m+n)n(mn)n(m+n)+m(mn) \begin{aligned} & =\dfrac{\dfrac{m}{n}n\left( m+n \right)-\dfrac{m-n}{m+n}n\left( m+n \right)}{n\left( m+n \right)+\dfrac{m}{n}\dfrac{m-n}{m+n}n\left( m+n \right)} \\\ & =\dfrac{m\left( m+n \right)-n\left( m-n \right)}{n\left( m+n \right)+m\left( m-n \right)} \\\ \end{aligned}
We know that a(b+c) = ab+ac and a(b-c) = ab-ac {Distributive law of multiplication over addition}
Using the above property, we get
LHS
=m2+mnnm+n2mn+n2+m2mn =m2+n2m2+n2=1 \begin{aligned} & =\dfrac{{{m}^{2}}+mn-nm+{{n}^{2}}}{mn+{{n}^{2}}+{{m}^{2}}-mn} \\\ & =\dfrac{{{m}^{2}}+{{n}^{2}}}{{{m}^{2}}+{{n}^{2}}}=1 \\\ \end{aligned}
Hence LHS = RHS.
Hence, we have tan(arctanmnarctanmnm+n)=1\tan \left( \arctan \dfrac{m}{n}-\arctan \dfrac{m-n}{m+n} \right)=1
Hence proved.
Note: Alternate Solution:
We know that arctanxarctany=nπ+arctanxy1+xy,nZ\arctan x-\arctan y=n\pi +\arctan \dfrac{x-y}{1+xy},n\in \mathbb{Z}, where n is suitably chosen so that nπ+arctanxy1+xyn\pi +\arctan \dfrac{x-y}{1+xy} is within the interval (π,π)\left( -\pi ,\pi \right)
Put x=mnx=\dfrac{m}{n} , and y=mnm+ny=\dfrac{m-n}{m+n} in the above identity, we get
arctanmnarctanmnm+n=kπ+arctan(mnmnm+n1+mnmnm+n)\arctan \dfrac{m}{n}-\arctan \dfrac{m-n}{m+n}=k\pi +\arctan \left( \dfrac{\dfrac{m}{n}-\dfrac{m-n}{m+n}}{1+\dfrac{m}{n}\dfrac{m-n}{m+n}} \right), for some suitably chosen k.
Simplifying the argument of arctan we get

arctanmnarctanmnm+n=kπ+arctan(m2+n2m2+n2)=kπ+π4\arctan \dfrac{m}{n}-\arctan \dfrac{m-n}{m+n}=k\pi +\arctan \left( \dfrac{{{m}^{2}}+{{n}^{2}}}{{{m}^{2}}+{{n}^{2}}} \right)=k\pi +\dfrac{\pi }{4}
Since arctanmnarctanmnm+n(π,π)\arctan \dfrac{m}{n}-\arctan \dfrac{m-n}{m+n}\in \left( -\pi ,\pi \right)we have
kπ+π4(π,π),kZk\pi +\dfrac{\pi }{4}\in \left( -\pi ,\pi \right),k\in \mathbb{Z}
Hence we have k = 0.
Hence arctanmnarctanmnm+n=π4\arctan \dfrac{m}{n}-\arctan \dfrac{m-n}{m+n}=\dfrac{\pi }{4}
Hence we have
tan(arctanmnarctanmnm+n)=tanπ4=1\tan \left( \arctan \dfrac{m}{n}-\arctan \dfrac{m-n}{m+n} \right)=\tan \dfrac{\pi }{4}=1
Hence proved.
[2] Observe that in the alternative solution, we need not find the value of k since tan(nπ+x)=tanx,nZ\tan \left( n\pi +x \right)=\tan x,n\in \mathbb{Z}.
Hence if we take tangents on both sides, we get
tan(arctanmnarctanmnm+n)=tan(kπ+π4)=tanπ4=1\tan \left( \arctan \dfrac{m}{n}-\arctan \dfrac{m-n}{m+n} \right)=\tan \left( k\pi +\dfrac{\pi }{4} \right)=\tan \dfrac{\pi }{4}=1.
[3]. Since tanx is not a one-one function, its inverse is defined only within some intervals. The principal interval for arctanx is (π2,π2)\left( -\dfrac{\pi }{2},\dfrac{\pi }{2} \right). Whenever not explicitly mentioned, we take arctanx in the principal interval. Hence we have
arctanx(π2,π2),arctany(π2,π2) arctanxarctany(π,π) \begin{aligned} & \arctan x\in \left( -\dfrac{\pi }{2},\dfrac{\pi }{2} \right),\arctan y\in \left( -\dfrac{\pi }{2},\dfrac{\pi }{2} \right) \\\ & \Rightarrow \arctan x-\arctan y\in \left( -\pi ,\pi \right) \\\ \end{aligned}
This is why we chose the value of n, so that nπ+arctanxy1+xyn\pi +\arctan \dfrac{x-y}{1+xy} is within the interval (π,π)\left( -\pi ,\pi \right). It can also be proved that unique n satisfies this property.