Solveeit Logo

Question

Question: Prove that \(\tan 75 + \cot 75 = 4\)....

Prove that tan75+cot75=4\tan 75 + \cot 75 = 4.

Explanation

Solution

To prove that tan75+cot75=4\tan 75 + \cot 75 = 4, first of all we will be writing 75 as 45 plus 30.
So, we can write tan75\tan 75 as tan(45+30)\tan \left( {45 + 30} \right). Now, we have the formula for
tan(A+B)=tanA+tanB1tanAtanB\Rightarrow \tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}
Using these, we will find the value of tan75\tan 75 and then we know that cot is inverse of tan. Hence, we will get the value of cot75\cot 75 as well. Now, we simply need to add these two values and check if the answer is 4 or not.

Complete step-by-step answer:
In this question, we have to prove that tan75+cot75=4\tan 75 + \cot 75 = 4.
For proving this, we need to use some trigonometric relations and formulas and also some mathematical calculations.
Now, we do not have any direct formula for proving this. So, we need to use some mathematical calculations.
First of all we can write 75 as 45 plus 30. Therefore,
tan75=tan(45+30)\tan 75 = \tan \left( {45 + 30} \right)
And cot75=cot(45+30)\cot 75 = \cot \left( {45 + 30} \right)
Now, let us find the values of tan75\tan 75 and cot75\cot 75 separately.
tan(45+30)\Rightarrow \tan \left( {45 + 30} \right)
Now, we have a formula
tan(A+B)=tanA+tanB1tanAtanB\Rightarrow \tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}
Here, A is 45 and B is 30. Therefore,
tan(45+30)=tan45+tan301tan45tan30\Rightarrow \tan \left( {45 + 30} \right) = \dfrac{{\tan 45 + \tan 30}}{{1 - \tan 45\tan 30}}
Now, tan45=1\tan 45 = 1 and tan30=13\tan 30 = \dfrac{1}{{\sqrt 3 }}. Therefore,
tan(45+30)=1+131(1)(13) tan(45+30)=3+13313=3+131  \Rightarrow \tan \left( {45 + 30} \right) = \dfrac{{1 + \dfrac{1}{{\sqrt 3 }}}}{{1 - \left( 1 \right)\left( {\dfrac{1}{{\sqrt 3 }}} \right)}} \\\ \Rightarrow \tan \left( {45 + 30} \right) = \dfrac{{\dfrac{{\sqrt 3 + 1}}{{\sqrt 3 }}}}{{\dfrac{{\sqrt 3 - 1}}{{\sqrt 3 }}}} = \dfrac{{\sqrt 3 + 1}}{{\sqrt 3 - 1}} \\\
And, for cot75\cot 75, we know that cot is reciprocal of tan. So therefore,
cot75=1tan75\Rightarrow \cot 75 = \dfrac{1}{{\tan 75}}
And we have found the value of tan75=3+131\tan 75 = \dfrac{{\sqrt 3 + 1}}{{\sqrt 3 - 1}}.
Therefore,
cot75=1tan75=13+131=313+1\Rightarrow \cot 75 = \dfrac{1}{{\tan 75}} = \dfrac{1}{{\dfrac{{\sqrt 3 + 1}}{{\sqrt 3 - 1}}}} = \dfrac{{\sqrt 3 - 1}}{{\sqrt 3 + 1}}
Now, we have both the values and now we need to add them. Therefore,
tan75+cot75=3+131+313+1\Rightarrow \tan 75 + \cot 75 = \dfrac{{\sqrt 3 + 1}}{{\sqrt 3 - 1}} + \dfrac{{\sqrt 3 - 1}}{{\sqrt 3 + 1}}
Now, taking LCM, we get

tan75+cot75=(3+1)(3+1)+(31)(31)(31)(3+1) tan75+cot75=3+3+3+1+333+13+331 tan75+cot75=8+23232 tan75+cot75=82 tan75+cot75=4  \Rightarrow \tan 75 + \cot 75 = \dfrac{{\left( {\sqrt 3 + 1} \right)\left( {\sqrt 3 + 1} \right) + \left( {\sqrt 3 - 1} \right)\left( {\sqrt 3 - 1} \right)}}{{\left( {\sqrt 3 - 1} \right)\left( {\sqrt 3 + 1} \right)}} \\\ \Rightarrow \tan 75 + \cot 75 = \dfrac{{3 + \sqrt 3 + \sqrt 3 + 1 + 3 - \sqrt 3 - \sqrt 3 + 1}}{{3 + \sqrt 3 - \sqrt 3 - 1}} \\\ \Rightarrow \tan 75 + \cot 75 = \dfrac{{8 + 2\sqrt 3 - 2\sqrt 3 }}{2} \\\ \Rightarrow \tan 75 + \cot 75 = \dfrac{8}{2} \\\ \Rightarrow \tan 75 + \cot 75 = 4 \\\

Hence, LHS = RHS.
Therefore, we have proved tan75+cot75=4\tan 75 + \cot 75 = 4.

Note: We can also use another method for proving that tan75+cot75=4\tan 75 + \cot 75 = 4.
First of all, we know that cot75=1tan75\cot 75 = \dfrac{1}{{\tan 75}}. Therefore, we get
tan75+1tan75=4\Rightarrow \tan 75 + \dfrac{1}{{\tan 75}} = 4- - - - - - - (1)
Taking LCM, we get
tan275+1tan75=4 tan275+1=4tan75 tan2754tan75+1=0  \Rightarrow \dfrac{{{{\tan }^2}75 + 1}}{{\tan 75}} = 4 \\\ \Rightarrow {\tan ^2}75 + 1 = 4\tan 75 \\\ \Rightarrow {\tan ^2}75 - 4\tan 75 + 1 = 0 \\\
Now, let tan75 be equal to x.
tan75=x\tan 75 = x
Therefore,
x24x+1=0\Rightarrow {x^2} - 4x + 1 = 0
Using the quadratic formula, we get
x=b±b24ac2a=(4)±(4)24(1)(1)2(1)=4±122\Rightarrow x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}} = \dfrac{{ - \left( { - 4} \right) \pm \sqrt {{{\left( { - 4} \right)}^2} - 4\left( 1 \right)\left( 1 \right)} }}{{2\left( 1 \right)}} = \dfrac{{4 \pm \sqrt {12} }}{2}
x=4+122=4+232=2+3\Rightarrow x = \dfrac{{4 + \sqrt {12} }}{2} = \dfrac{{4 + 2\sqrt 3 }}{2} = 2 + \sqrt 3
Therefore, tan75=2+3\tan 75 = 2 + \sqrt 3
Put this value in equation (1), we get
tan75+1tan75=4 (2+3)+1(2+3)=4 (2+3)(2+3)+1(2+3)=4 8+432+3=4 8+432+3×(23)(23)=4 1683+8312423+233=4 4=4  \Rightarrow \tan 75 + \dfrac{1}{{\tan 75}} = 4 \\\ \Rightarrow \left( {2 + \sqrt 3 } \right) + \dfrac{1}{{\left( {2 + \sqrt 3 } \right)}} = 4 \\\ \Rightarrow \dfrac{{\left( {2 + \sqrt 3 } \right)\left( {2 + \sqrt 3 } \right) + 1}}{{\left( {2 + \sqrt 3 } \right)}} = 4 \\\ \Rightarrow \dfrac{{8 + 4\sqrt 3 }}{{2 + \sqrt 3 }} = 4 \\\ \Rightarrow \dfrac{{8 + 4\sqrt 3 }}{{2 + \sqrt 3 }} \times \dfrac{{\left( {2 - \sqrt 3 } \right)}}{{\left( {2 - \sqrt 3 } \right)}} = 4 \\\ \Rightarrow \dfrac{{16 - 8\sqrt 3 + 8\sqrt 3 - 12}}{{4 - 2\sqrt 3 + 2\sqrt 3 - 3}} = 4 \\\ \Rightarrow 4 = 4 \\\
Hence, we have proved that tan75+cot75=4\tan 75 + \cot 75 = 4.