Solveeit Logo

Question

Question: Prove that: \[\tan {70^ \circ } - \tan {50^ \circ } + \tan {10^ \circ } = \sqrt 3 \]....

Prove that: tan70tan50+tan10=3\tan {70^ \circ } - \tan {50^ \circ } + \tan {10^ \circ } = \sqrt 3 .

Explanation

Solution

Hint : To find the value of tan70tan50+tan10\tan {70^ \circ } - \tan {50^ \circ } + \tan {10^ \circ }, we will first write the angles in terms of sum of known angles then we will expand it using trigonometric formulas. On simplification and using trigonometric triple angle identity we will further simplify by putting the value of known angles to find the result.
Some trigonometric formulas that we will use are as follows:
tan(A+B)=tanA+tanB1tanAtanB\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}
tan(AB)=tanAtanB1+tanAtanB\tan \left( {A - B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}

Complete step-by-step answer :
We have to find the value of tan70tan50+tan10\tan {70^ \circ } - \tan {50^ \circ } + \tan {10^ \circ }. For this we will start with writing the angles in terms of standard known angles.
We will write 70{70^ \circ } as (60+10)\left( {{{60}^ \circ } + {{10}^ \circ }} \right) and 50{50^ \circ } as (6010)\left( {{{60}^ \circ } - {{10}^ \circ }} \right) because 60{60^ \circ } is a standard angle and we know its values for different trigonometric functions.
Some trigonometric formulas that we will use are as follows:
tan(A+B)=tanA+tanB1tanAtanB\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}
tan(AB)=tanAtanB1+tanAtanB\tan \left( {A - B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}
Also, we have tan60=3\tan {60^ \circ } = \sqrt 3 and tan30=13\tan {30^ \circ } = \dfrac{1}{{\sqrt 3 }}.
We can write the given expression as
\Rightarrow $$$$\tan {70^ \circ } - \tan {50^ \circ } + \tan {10^ \circ }
=tan(60+10)tan(6010)+tan10= \tan \left( {{{60}^ \circ } + {{10}^ \circ }} \right) - \tan \left( {{{60}^ \circ } - {{10}^ \circ }} \right) + \tan {10^ \circ }
Using the formula, we can write
=tan60+tan101(tan60×tan10)tan60tan101+(tan60×tan10)+tan10= \dfrac{{\tan {{60}^ \circ } + \tan {{10}^ \circ }}}{{1 - \left( {\tan {{60}^ \circ } \times \tan {{10}^ \circ }} \right)}} - \dfrac{{\tan {{60}^ \circ } - \tan {{10}^ \circ }}}{{1 + \left( {\tan {{60}^ \circ } \times \tan {{10}^ \circ }} \right)}} + \tan {10^ \circ }
Putting the value of tan60\tan {60^ \circ }, we get
=3+tan101(3×tan10)3tan101+(3×tan10)+tan10= \dfrac{{\sqrt 3 + \tan {{10}^ \circ }}}{{1 - \left( {\sqrt 3 \times \tan {{10}^ \circ }} \right)}} - \dfrac{{\sqrt 3 - \tan {{10}^ \circ }}}{{1 + \left( {\sqrt 3 \times \tan {{10}^ \circ }} \right)}} + \tan {10^ \circ }
On rewriting we get
=3+tan1013tan103tan101+3tan10+tan10= \dfrac{{\sqrt 3 + \tan {{10}^ \circ }}}{{1 - \sqrt 3 \tan {{10}^ \circ }}} - \dfrac{{\sqrt 3 - \tan {{10}^ \circ }}}{{1 + \sqrt 3 \tan {{10}^ \circ }}} + \tan {10^ \circ }
On taking LCM, we get
=(3+tan10)(1+3tan10)(3tan10)(13tan10)+tan10(13tan10)(1+3tan10)(13tan10)(1+3tan10)= \dfrac{{\left( {\sqrt 3 + \tan {{10}^ \circ }} \right)\left( {1 + \sqrt 3 \tan {{10}^ \circ }} \right) - \left( {\sqrt 3 - \tan {{10}^ \circ }} \right)\left( {1 - \sqrt 3 \tan {{10}^ \circ }} \right) + \tan {{10}^ \circ }\left( {1 - \sqrt 3 \tan {{10}^ \circ }} \right)\left( {1 + \sqrt 3 \tan {{10}^ \circ }} \right)}}{{\left( {1 - \sqrt 3 \tan {{10}^ \circ }} \right)\left( {1 + \sqrt 3 \tan {{10}^ \circ }} \right)}}
On multiplication and using the formula (ab)(a+b)=a2b2(a - b)(a + b) = {a^2} - {b^2}, we get
=(3+3tan10+tan10+3tan210)(33tan10tan10+3tan210)+(tan103tan310)(13tan210)= \dfrac{{\left( {\sqrt 3 + 3\tan {{10}^ \circ } + \tan {{10}^ \circ } + \sqrt 3 {{\tan }^2}{{10}^ \circ }} \right) - \left( {\sqrt 3 - 3\tan {{10}^ \circ } - \tan {{10}^ \circ } + \sqrt 3 {{\tan }^2}{{10}^ \circ }} \right) + \left( {\tan {{10}^ \circ } - 3{{\tan }^3}{{10}^ \circ }} \right)}}{{\left( {1 - 3{{\tan }^2}{{10}^ \circ }} \right)}}
On simplification, we get
=3+3tan10+tan10+3tan2103+3tan10+tan103tan210+tan103tan31013tan210= \dfrac{{\sqrt 3 + 3\tan {{10}^ \circ } + \tan {{10}^ \circ } + \sqrt 3 {{\tan }^2}{{10}^ \circ } - \sqrt 3 + 3\tan {{10}^ \circ } + \tan {{10}^ \circ } - \sqrt 3 {{\tan }^2}{{10}^ \circ } + \tan {{10}^ \circ } - 3{{\tan }^3}{{10}^ \circ }}}{{1 - 3{{\tan }^2}{{10}^ \circ }}}
On simplification, we get
=9tan103tan31013tan210= \dfrac{{9\tan {{10}^ \circ } - 3{{\tan }^3}{{10}^ \circ }}}{{1 - 3{{\tan }^2}{{10}^ \circ }}}
On taking 33 common from the numerator we get
=3×(3tan10tan310)13tan210(1)= 3 \times \dfrac{{\left( {3\tan {{10}^ \circ } - {{\tan }^3}{{10}^ \circ }} \right)}}{{1 - 3{{\tan }^2}{{10}^ \circ }}} - - - (1)
As we know, tan3θ=3tanθtan3θ13tan2θ\tan 3\theta = \dfrac{{3\tan \theta - {{\tan }^3}\theta }}{{1 - 3{{\tan }^2}\theta }}.
Using this we can write (1)(1)
=3×tan(3×10)= 3 \times \tan \left( {3 \times {{10}^ \circ }} \right)
=3tan30= 3\tan {30^ \circ }
Using tan30=13\tan {30^ \circ } = \dfrac{1}{{\sqrt 3 }}, we get
tan70tan50+tan10=3×13\Rightarrow \tan {70^ \circ } - \tan {50^ \circ } + \tan {10^ \circ } = 3 \times \dfrac{1}{{\sqrt 3 }}
On simplification,
tan70tan50+tan10=3\Rightarrow \tan {70^ \circ } - \tan {50^ \circ } + \tan {10^ \circ } = \sqrt 3
Hence, proved that tan70tan50+tan10=3\tan {70^ \circ } - \tan {50^ \circ } + \tan {10^ \circ } = \sqrt 3 .

Note : Here, we have written tan70\tan {70^ \circ } as tan(60+10)\tan \left( {{{60}^ \circ } + {{10}^ \circ }} \right) and tan50\tan {50^ \circ } as tan(6010)\tan \left( {{{60}^ \circ } - {{10}^ \circ }} \right) because we have known values of only few trigonometric angles. So, we have written it in a way that it can be splitted into known angles and we can substitute direct values of these angles which will simplify the equation. Also note that, we have not changed tan10\tan {10^ \circ } because there is no way to write the sum of this angle in a way that it can give standard angles where we can put direct results.