Solveeit Logo

Question

Question: Prove that: \( \tan 70^\circ = \tan 20^\circ + 2\tan 50^\circ \)...

Prove that: tan70=tan20+2tan50\tan 70^\circ = \tan 20^\circ + 2\tan 50^\circ

Explanation

Solution

Hint : Write 700{70^0} as the sum of 200{20^0} and 500.{50^0}. Then use the expansion formula of tan\tan to solve this question. One must be aware how to use allied angles to arrive at the result.

Complete step-by-step answer :
We will use the formula,
tan(θ+ϕ)=tanθ+tanϕ1tanθtanϕ\tan (\theta + \phi ) = \dfrac{{\tan \theta + \tan \phi }}{{1 - \tan \theta \tan \phi }} . . . (1)
We can write
tan70=tan(20+50)\tan 70^\circ = \tan (20^\circ + 50^\circ )
So, by using equation (1), we can write
tan70=tan(20+50)\tan 70^\circ = \tan (20^\circ + 50^\circ )
tan70=tan20+tan501tan20tan50\Rightarrow \tan 70^\circ = \dfrac{{\tan 20^\circ + \tan 50^\circ }}{{1 - \tan 20^\circ \tan 50^\circ }}
By rearranging, we get
tan70×(1tan20tan50)=tan20+tan50\tan 70^\circ \times (1 - \tan 20^\circ \tan 50^\circ ) = \tan 20^\circ + \tan 50^\circ
Expanding the bracket, we get
tan70tan20tan50tan70=tan20+tan50\tan 70^\circ - \tan 20^\circ \tan 50^\circ \tan 70^\circ = \tan 20^\circ + \tan 50^\circ
tan70tan20tan50tan(90200)=tan20+tan50\Rightarrow \tan 70^\circ - \tan 20^\circ \tan 50^\circ \tan (90^\circ - {20^0}) = \tan 20^\circ + \tan 50^\circ
tan70tan20tan50cot20=tan20+tan50\Rightarrow \tan 70^\circ - \tan 20^\circ \tan 50^\circ \cot 20^\circ = \tan 20^\circ + \tan 50^\circ (tan(900θ)=cotθ)\left( {\because \tan ({{90}^0} - \theta ) = \cot \theta } \right)
tan70tan20tan501tan20=tan20+tan50\Rightarrow \tan 70^\circ - \tan 20^\circ \tan 50^\circ \dfrac{1}{{\tan 20^\circ }} = \tan 20^\circ + \tan 50^\circ (cotθ=1tanθ)\left( {\because \cot \theta = \dfrac{1}{{\tan \theta }}} \right)
Cancel the common terms
tan70tan50=tan20+tan50\Rightarrow \tan 70^\circ - \tan 50^\circ = \tan 20^\circ + \tan 50^\circ
tan70=tan20+2tan50\Rightarrow \tan 70^\circ = \tan 20^\circ + 2\tan 50^\circ
Hence proved.

Note : Observe the question carefully. You should understand that the number is LHS is the sum of numbers in RHS. That is when it should occur to you that you have to write 700=500+200{70^0} = {50^0} + {20^0}
Finding a relation in the terms of question is important in such types of questions. Otherwise, it would be difficult to understand which formula to use to solve the question.