Question
Question: Prove that: \(\tan {{70}^{\circ }}=\tan {{20}^{\circ }}+2\tan {{50}^{\circ }}\)....
Prove that: tan70∘=tan20∘+2tan50∘.
Solution
We have a tangent of angle as: tan70∘ . We can write this expression as: tan(20+50)∘
Now, by addition rule of tangent of angles, i.e. tan(A+B)=1−tanA.tanBtanA+tanB solve the expression tan(20+50)∘.Then check if you can convert any angles into cotangent and cancel out the terms to get the final expression tan70∘=tan20∘+2tan50∘.
Complete step by step answer:
We have the following expression: tan70∘......(1)
We can write equation (1) as:
tan70∘=tan(20+50)∘......(2)
Now, by using addition rule of tangent of angles, i.e. tan(A+B)=1−tanA.tanBtanA+tanB for equation (2), we get:
tan70∘=1−tan20∘.tan50∘tan20∘+tan50∘......(3)
We can also write equation (3) as:
tan70∘(1−tan20∘.tan50∘)=tan20∘+tan50∘......(4)
Now, expand equation (4), we get:
(tan70∘−tan20∘.tan50∘tan70∘)=tan20∘+tan50∘......(5)
We can write equation (5) as:
tan70∘=tan20∘+tan50∘+tan20∘.tan50∘tan70∘......(6)
We can write tan20∘=tan(90−70)∘
We get:
tan70∘=tan20∘+tan50∘+tan(90−70)∘.tan50∘tan70∘......(7)
We know that tan(90−θ)=cotθ
So, we get:
tan70∘=tan20∘+tan50∘+cot70∘.tan50∘tan70∘......(8)
Also, we know that: tanθ.cotθ=1
So, we get: