Solveeit Logo

Question

Question: Prove that: \(\tan {{70}^{\circ }}=\tan {{20}^{\circ }}+2\tan {{50}^{\circ }}\)....

Prove that: tan70=tan20+2tan50\tan {{70}^{\circ }}=\tan {{20}^{\circ }}+2\tan {{50}^{\circ }}.

Explanation

Solution

We have a tangent of angle as: tan70\tan {{70}^{\circ }} . We can write this expression as: tan(20+50)\tan {{\left( 20+50 \right)}^{\circ }}
Now, by addition rule of tangent of angles, i.e. tan(A+B)=tanA+tanB1tanA.tanB\tan \left( A+B \right)=\dfrac{\tan A+\tan B}{1-\tan A.\tan B} solve the expression tan(20+50)\tan {{\left( 20+50 \right)}^{\circ }}.Then check if you can convert any angles into cotangent and cancel out the terms to get the final expression tan70=tan20+2tan50\tan {{70}^{\circ }}=\tan {{20}^{\circ }}+2\tan {{50}^{\circ }}.

Complete step by step answer:
We have the following expression: tan70......(1)\tan {{70}^{\circ }}......(1)
We can write equation (1) as:
tan70=tan(20+50)......(2)\tan {{70}^{\circ }}=\tan {{\left( 20+50 \right)}^{\circ }}......(2)
Now, by using addition rule of tangent of angles, i.e. tan(A+B)=tanA+tanB1tanA.tanB\tan \left( A+B \right)=\dfrac{\tan A+\tan B}{1-\tan A.\tan B} for equation (2), we get:
tan70=tan20+tan501tan20.tan50......(3)\tan {{70}^{\circ }}=\dfrac{\tan {{20}^{\circ }}+\tan {{50}^{\circ }}}{1-\tan {{20}^{\circ }}.\tan {{50}^{\circ }}}......(3)
We can also write equation (3) as:
tan70(1tan20.tan50)=tan20+tan50......(4)\tan {{70}^{\circ }}\left( 1-\tan {{20}^{\circ }}.\tan {{50}^{\circ }} \right)=\tan {{20}^{\circ }}+\tan {{50}^{\circ }}......(4)
Now, expand equation (4), we get:
(tan70tan20.tan50tan70)=tan20+tan50......(5)\left( \tan {{70}^{\circ }}-\tan {{20}^{\circ }}.\tan {{50}^{\circ }}\tan {{70}^{\circ }} \right)=\tan {{20}^{\circ }}+\tan {{50}^{\circ }}......(5)
We can write equation (5) as:
tan70=tan20+tan50+tan20.tan50tan70......(6)\tan {{70}^{\circ }}=\tan {{20}^{\circ }}+\tan {{50}^{\circ }}+\tan {{20}^{\circ }}.\tan {{50}^{\circ }}\tan {{70}^{\circ }}......(6)
We can write tan20=tan(9070)\tan {{20}^{\circ }}=\tan {{\left( 90-70 \right)}^{\circ }}
We get:
tan70=tan20+tan50+tan(9070).tan50tan70......(7)\tan {{70}^{\circ }}=\tan {{20}^{\circ }}+\tan {{50}^{\circ }}+\tan {{\left( 90-70 \right)}^{\circ }}.\tan {{50}^{\circ }}\tan {{70}^{\circ }}......(7)
We know that tan(90θ)=cotθ\tan \left( 90-\theta \right)=\cot \theta
So, we get:
tan70=tan20+tan50+cot70.tan50tan70......(8)\tan {{70}^{\circ }}=\tan {{20}^{\circ }}+\tan {{50}^{\circ }}+\cot {{70}^{\circ }}.\tan {{50}^{\circ }}\tan {{70}^{\circ }}......(8)
Also, we know that: tanθ.cotθ=1\tan \theta .\cot \theta =1
So, we get:

& \Rightarrow \tan {{70}^{\circ }}=\tan {{20}^{\circ }}+\tan {{50}^{\circ }}+\tan {{50}^{\circ }} \\\ & \Rightarrow \tan {{70}^{\circ }}=\tan {{20}^{\circ }}+2\tan {{50}^{\circ }} \\\ \end{aligned}$$ **Hence proved that $\tan {{70}^{\circ }}=\tan {{20}^{\circ }}+2\tan {{50}^{\circ }}$.** **Note:** Always remember that, whenever we are given to solve an expression having tangent of angles, try to solve it by addition rule for tangent of angles, i.e. $\tan \left( A+B \right)=\dfrac{\tan A+\tan B}{1-\tan A.\tan B}$ or subtraction rule of tangent of angles, i.e. $\tan \left( A-B \right)=\dfrac{\tan A-\tan B}{1+\tan A.\tan B}$ . Also, we can turn angles into cotangent and cancel out the terms to make the expression simpler.