Solveeit Logo

Question

Question: Prove that \(\tan 70^\circ = \cot 70^\circ + 2\cot 40^\circ \)....

Prove that tan70=cot70+2cot40\tan 70^\circ = \cot 70^\circ + 2\cot 40^\circ .

Explanation

Solution

In this question, we are given a trigonometric equation and we have been asked to prove that LHS = RHS. Start by taking the LHS. Expand the LHS in such a way that you can use the formula tan(a+b)=tana+tanb1tana.tanb\tan \left( {a + b} \right) = \dfrac{{\tan a + \tan b}}{{1 - \tan a.\tan b}} for expansion. After using the formula, shift the denominator to the other side and multiply it with the LHS. Then simplify the equation using some trigonometric identities. You will get the simplified equation in terms of tan. Convert it into cot using tan(90x)=cotx\tan \left( {90 - x} \right)^\circ = \cot x^\circ as our RHS is in terms of cot. This will help in proving LHS = RHS.

Formula used: 1) tan(a+b)=tana+tanb1tana.tanb\tan \left( {a + b} \right) = \dfrac{{\tan a + \tan b}}{{1 - \tan a.\tan b}}
2) tan(90x)=cotx\tan \left( {90 - x} \right)^\circ = \cot x^\circ

Complete step-by-step answer:
We are given a trigonometric equation and we have been asked to prove that LHS = RHS. We will begin by expanding the LHS of the given equation.
LHS = tan70\tan 70^\circ
We can write tan70=tan(20+50)\tan 70^\circ = \tan \left( {20 + 50} \right)^\circ
Now, we will expand this using the formula tan(a+b)=tana+tanb1tana.tanb\tan \left( {a + b} \right) = \dfrac{{\tan a + \tan b}}{{1 - \tan a.\tan b}}.
tan70=tan20+tan501tan20.tan50\Rightarrow \tan 70^\circ = \dfrac{{\tan 20^\circ + \tan 50^\circ }}{{1 - \tan 20^\circ .\tan 50^\circ }}
Shifting the denominator to the other side,
tan70(1tan20.tan50)=tan20+tan50\Rightarrow \tan 70^\circ \left( {1 - \tan 20^\circ .\tan 50^\circ } \right) = \tan 20^\circ + \tan 50^\circ
Multiplying tan70\tan 70^\circ ,
tan70tan70tan20tan50=tan20+tan50\Rightarrow \tan 70^\circ - \tan 70^\circ \tan 20^\circ \tan 50^\circ = \tan 20^\circ + \tan 50^\circ
Rearranging terms and keeping only tan70\tan 70^\circ on the LHS,
tan70=tan20+tan50+tan70tan20tan50\Rightarrow \tan 70^\circ = \tan 20^\circ + \tan 50^\circ + \tan 70^\circ \tan 20^\circ \tan 50^\circ ……………….... (1)
We can write tan20=tan(9070)\tan 20^\circ = \tan \left( {90 - 70} \right)^\circ ………………... (2)
We know that tan(90x)=cotx\tan \left( {90 - x} \right)^\circ = \cot x^\circ . Using it in equation (2),
tan(9070)=cot70\Rightarrow \tan \left( {90 - 70} \right)^\circ = \cot 70^\circ
Therefore, tan20=cot70\tan 20^\circ = \cot 70^\circ
Now we can put this in equation (1),
tan70=tan20+tan50+tan70cot70tan50\Rightarrow \tan 70^\circ = \tan 20^\circ + \tan 50^\circ + \tan 70^\circ \cot 70^\circ \tan 50^\circ
If we expand tan70cot70\tan 70^\circ \cot 70^\circ =sin70×cos70cos70×sin70 = \dfrac{{{\text{sin70}}^\circ \times {\text{cos70}}^\circ }}{{\cos 70^\circ \times \sin 70^\circ }}
On cancelling we will get, sin70×cos70cos70×sin70=1\dfrac{{{\text{sin70}}^\circ \times {\text{cos70}}^\circ }}{{\cos 70^\circ \times \sin 70^\circ }} = 1
Therefore, tan70cot70\tan 70^\circ \cot 70^\circ =1 = 1. Using this in equation (1) again,
tan70=tan20+tan50+tan50\Rightarrow \tan 70^\circ = \tan 20^\circ + \tan 50^\circ + \tan 50^\circ
Simplifying,
tan70=tan20+2tan50\Rightarrow \tan 70^\circ = \tan 20^\circ + 2\tan 50^\circ …………..…. (3)
Now, we will convert the RHS in terms of cot using the same method as used above:
tan20=tan(9070)=cot70\Rightarrow \tan 20^\circ = \tan \left( {90 - 70} \right)^\circ = \cot 70^\circ
tan50=tan(9040)=cot40\Rightarrow \tan 50^\circ = \tan \left( {90 - 40} \right)^\circ = \cot 40^\circ
Substituting them in equation (3),
tan70=cot70+2cot40\Rightarrow \tan 70^\circ = \cot 70 + 2\cot 40^\circ= RHS
\therefore LHS = RHS.
Hence proved.

Note: There are certain formulas which will make certain steps easier. They are:
If a+b=90a + b = 90^\circ , then
\Rightarrow tana=cotb\tan a^\circ = \cot b^\circ
For example: We know that 30+60=9030 + 60 = 90.
tan30=cot60=13\tan 30^\circ = \cot 60^\circ = \dfrac{1}{{\sqrt 3 }}
tana.tanb=1\Rightarrow \tan a.\tan b = 1
For example: We know that 30+60=9030 + 60 = 90.
tan30.tan60=?\tan 30^\circ .\tan 60^\circ = ?
13×3=1\dfrac{1}{{\sqrt 3 }} \times \sqrt 3 = 1
Therefore, tan30.tan60=1\tan 30^\circ .\tan 60^\circ = 1
cota.cotb=1\Rightarrow \cot a.\cot b = 1
For example: We know that 30+60=9030 + 60 = 90.
cot30.cot60=?\cot 30^\circ .\cot 60^\circ = ?
13×3=1\dfrac{1}{{\sqrt 3 }} \times \sqrt 3 = 1
cot30.cot60=1\therefore \cot 30^\circ .\cot 60^\circ = 1