Solveeit Logo

Question

Question: Prove that \(\tan 70^\circ = 2\tan 50^\circ + \tan 20^\circ \)...

Prove that tan70=2tan50+tan20\tan 70^\circ = 2\tan 50^\circ + \tan 20^\circ

Explanation

Solution

As we know that for tan(A+B)=tanA+tanB1tanAtanB\tan (A + B) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}
So we can write that tan70=tan(50+20)\tan 70^\circ = \tan (50^\circ + 20^\circ )
Now you can easily expand using the given formula and can prove the above equation.

Complete step-by-step answer:
As we need to prove that
tan70=2tan50+tan20\tan 70^\circ = 2\tan 50^\circ + \tan 20^\circ
Now we have tan70\tan 70^\circ in LHS. So as we know the formula of tan(A+B)\tan (A + B) which is
tan(A+B)=tanA+tanB1tanAtanB\tan (A + B) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}
So first thing which we are seeing that in the LHS we have tan70\tan 70^\circ and we need to split it in tan20 and tan50\tan 20^\circ {\text{ and }}\tan 50^\circ as
tan70=tan(50+20)\tan 70^\circ = \tan (50^\circ + 20^\circ )
Now we can use tan(A+B)=tanA+tanB1tanAtanB\tan (A + B) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}
So we get tan70=tan20+tan501tan20tan50\tan 70^\circ = \dfrac{{\tan 20^\circ + \tan 50^\circ }}{{1 - \tan 20^\circ \tan 50^\circ }}
Upon further simplification, we get that
\Rightarrow tan70tan70tan20tan50=tan20+tan50\tan 70^\circ - \tan 70^\circ \tan 20^\circ \tan 50^\circ = \tan 20^\circ + \tan 50^\circ
Now we can write it as
\Rightarrow tan70=tan20+tan50+tan70tan20tan50\tan 70^\circ = \tan 20^\circ + \tan 50^\circ + \tan 70^\circ \tan 20^\circ \tan 50^\circ (1) - - - - - (1)
Also we know that tan(90θ)=cotθ\tan (90 - \theta ) = \cot \theta
tanθ=1cotθ\tan \theta = \dfrac{1}{{\cot \theta }}
So we can cross multiply
tanθcotθ=1\tan \theta \cot \theta = 1
So we can write that
tan70=tan(9020)  =cot20 \Rightarrow \tan 70^\circ = \tan (90^\circ - 20^\circ ) \\\ {\text{ }} = \cot 20^\circ
Now we put this value in equation (1)
\Rightarrow tan70=tan20+tan50+cot20tan20tan50\tan 70^\circ = \tan 20^\circ + \tan 50^\circ + \cot 20^\circ \tan 20^\circ \tan 50^\circ
So as tanθcotθ=1\tan \theta \cot \theta = 1
We can write that
\Rightarrow tan20cot20=1\tan 20^\circ \cot 20^\circ = 1
We get that
\Rightarrow tan70=tan20+tan50+tan50\tan 70^\circ = \tan 20^\circ + \tan 50^\circ + \tan 50^\circ
\Rightarrow tan70=tan20+2tan50\tan 70^\circ = \tan 20^\circ + 2\tan 50^\circ
Hence proved.

Note: We should know the following conversions like
sin(90±θ)=cosθ;sinθcosecθ=1 cosec(90±θ)=secθ;cosθsecθ=1 tan(90±θ)=cotθ;tanθcotθ=1  \sin (90 \pm \theta ) = \cos \theta ;\sin \theta {\text{cosec}}\theta = 1 \\\ {\text{cosec}}(90 \pm \theta ) = \sec \theta ;\cos \theta \sec \theta = 1 \\\ \tan (90 \pm \theta ) = \cot \theta ;\tan \theta \cot \theta = 1 \\\