Solveeit Logo

Question

Question: Prove that \[\tan 6^\circ \tan 42^\circ \tan 66^\circ \tan 78^\circ = 1\]....

Prove that tan6tan42tan66tan78=1\tan 6^\circ \tan 42^\circ \tan 66^\circ \tan 78^\circ = 1.

Explanation

Solution

We can rearrange the terms in the product. Express tan\tan in terms of sine and cosine. Then we can apply the result of addition and subtraction of cosine terms. Now substitute the known trigonometric values. Simplifying we get the left hand side equal to the right hand side.

Formula used:
We have the trigonometric relations:
tanθ=sinθcosθ\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}
cosAcosB=2sin(A+B2)sin(AB2)(i)\cos A - \cos B = - 2\sin (\dfrac{{A + B}}{2})\sin (\dfrac{{A - B}}{2}) - - - (i)
cosA+cosB=2cos(A+B2)cos(AB2)(ii)\cos A + \cos B = 2\cos (\dfrac{{A + B}}{2})\cos (\dfrac{{A - B}}{2}) - - - (ii)
sin(θ)=sinθ\sin ( - \theta ) = - \sin \theta
cos(θ)=cosθ\cos ( - \theta ) = \cos \theta
Also we have,
(a+b)(ab)=a2b2(a + b)(a - b) = {a^2} - {b^2}

Complete step-by-step answer:
Given the expression,
tan6tan42tan66tan78\tan 6^\circ \tan 42^\circ \tan 66^\circ \tan 78^\circ
We can rearrange the terms.
tan6tan42tan66tan78=(tan66tan6)(tan78tan42)\tan 6^\circ \tan 42^\circ \tan 66^\circ \tan 78^\circ = (\tan 66^\circ \tan 6^\circ )(\tan 78^\circ \tan 42^\circ )
We know that tanθ=sinθcosθ\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}
Using this we get,
tan6tan42tan66tan78=(sin66cos66sin6cos6)(sin78cos78sin42cos42)\tan 6^\circ \tan 42^\circ \tan 66^\circ \tan 78^\circ = (\dfrac{{\sin 66^\circ }}{{\cos 66^\circ }}\dfrac{{\sin 6^\circ }}{{\cos 6^\circ }})(\dfrac{{\sin 78^\circ }}{{\cos 78^\circ }}\dfrac{{\sin 42^\circ }}{{\cos 42^\circ }})
Multiplying and dividing by 22 we get,
tan6tan42tan66tan78=(2sin662cos66sin6cos6)(2sin782cos78sin42cos42)\tan 6^\circ \tan 42^\circ \tan 66^\circ \tan 78^\circ = (\dfrac{{2\sin 66^\circ }}{{2\cos 66^\circ }}\dfrac{{\sin 6^\circ }}{{\cos 6^\circ }})(\dfrac{{2\sin 78^\circ }}{{2\cos 78^\circ }}\dfrac{{\sin 42^\circ }}{{\cos 42^\circ }}) - - - *

We have the trigonometric relations:
cosAcosB=2sin(A+B2)sin(AB2)(i)\cos A - \cos B = - 2\sin (\dfrac{{A + B}}{2})\sin (\dfrac{{A - B}}{2}) - - - (i)
cosA+cosB=2cos(A+B2)cos(AB2)(ii)\cos A + \cos B = 2\cos (\dfrac{{A + B}}{2})\cos (\dfrac{{A - B}}{2}) - - - (ii)
Let A=60,B=72A = 60,B = 72
We get, A+B2=60+722=1322=66\dfrac{{A + B}}{2} = \dfrac{{60 + 72}}{2} = \dfrac{{132}}{2} = 66
AB2=60722=122=6\dfrac{{A - B}}{2} = \dfrac{{60 - 72}}{2} = \dfrac{{ - 12}}{2} = - 6
Substituting in the above result we get,
\Rightarrow cos60cos72=2sin66sin(6)\cos 60 - \cos 72 = - 2\sin 66\sin ( - 6)
We have sin(θ)=sinθ\sin ( - \theta ) = - \sin \theta
So we get,
\Rightarrow cos60cos72=2sin66sin6(iii)\cos 60 - \cos 72 = 2\sin 66\sin 6 - - - (iii)
Also (ii)(ii) gives,
\Rightarrow cos60+cos72=2cos66cos(6)\cos 60 + \cos 72 = 2\cos 66\cos ( - 6)
And we have cos(θ)=cosθ\cos ( - \theta ) = \cos \theta
So we get,
cos60+cos72=2cos66cos6(iv)\cos 60 + \cos 72 = 2\cos 66\cos 6 - - - (iv)
Similarly let A=36,B=120A = 36,B = 120
We get, A+B2=36+1202=1562=78\dfrac{{A + B}}{2} = \dfrac{{36 + 120}}{2} = \dfrac{{156}}{2} = 78
\Rightarrow AB2=361202=842=42\dfrac{{A - B}}{2} = \dfrac{{36 - 120}}{2} = \dfrac{{ - 84}}{2} = - 42
Substituting in the above result we get,
\Rightarrow cos36cos120=2sin78sin(42)\cos 36 - \cos 120 = - 2\sin 78\sin ( - 42)
We have sin(θ)=sinθ\sin ( - \theta ) = - \sin \theta
So we get,
\Rightarrow cos36cos120=2sin78sin42(v)\cos 36 - \cos 120 = 2\sin 78\sin 42 - - - (v)
Also (ii)(ii) gives,
\Rightarrow cos36+cos120=2cos78cos(42)\cos 36 + \cos 120 = 2\cos 78\cos ( - 42)
And we have cos(θ)=cosθ\cos ( - \theta ) = \cos \theta
So we get,
\Rightarrow cos36+cos120=2cos78cos42(vi)\cos 36 + \cos 120 = 2\cos 78\cos 42 - - - (vi)

Substituting using equations (iii),(iv),(v)(iii),(iv),(v) and (vi)(vi) in equation * we get,
tan6tan42tan66tan78=(cos60cos72cos60+cos72)(cos36cos120cos36+cos120)\tan 6^\circ \tan 42^\circ \tan 66^\circ \tan 78^\circ = (\dfrac{{\cos 60 - \cos 72}}{{\cos 60 + \cos 72}})(\dfrac{{\cos 36 - \cos 120}}{{\cos 36 + \cos 120}}) - - - **
We know cos60=12\cos 60 = \dfrac{1}{2} and cos120=cos(90+30)=sin30=12\cos 120 = \cos (90 + 30) = - \sin 30 = - \dfrac{1}{2}
Also 72=901872 = 90 - 18
This gives cos72=cos(9018)==sin18\cos 72 = \cos (90 - 18) = = \sin 18
Substituting these we get,
\Rightarrow tan6tan42tan66tan78=(12sin1812+sin18)×(cos36(12)cos36+(12))\tan 6^\circ \tan 42^\circ \tan 66^\circ \tan 78^\circ = (\dfrac{{\dfrac{1}{2} - \sin 18}}{{\dfrac{1}{2} + \sin 18}}) \times (\dfrac{{\cos 36 - ( - \dfrac{1}{2})}}{{\cos 36 + ( - \dfrac{1}{2})}})
Simplifying we get,
\Rightarrow tan6tan42tan66tan78=(12sin1812+sin18)×(cos36+12cos3612)\tan 6^\circ \tan 42^\circ \tan 66^\circ \tan 78^\circ = (\dfrac{{\dfrac{1}{2} - \sin 18}}{{\dfrac{1}{2} + \sin 18}}) \times (\dfrac{{\cos 36 + \dfrac{1}{2}}}{{\cos 36 - \dfrac{1}{2}}})
We have sin18=514\sin 18 = \dfrac{{\sqrt 5 - 1}}{4} and cos36=5+14\cos 36 = \dfrac{{\sqrt 5 + 1}}{4}.
Substituting we get,
\Rightarrow tan6tan42tan66tan78=1251412+514×5+14+125+1412\tan 6^\circ \tan 42^\circ \tan 66^\circ \tan 78^\circ = \dfrac{{\dfrac{1}{2} - \dfrac{{\sqrt 5 - 1}}{4}}}{{\dfrac{1}{2} + \dfrac{{\sqrt 5 - 1}}{4}}} \times \dfrac{{\dfrac{{\sqrt 5 + 1}}{4} + \dfrac{1}{2}}}{{\dfrac{{\sqrt 5 + 1}}{4} - \dfrac{1}{2}}}
Simplifying we get,
\Rightarrow tan6tan42tan66tan78=25+142+514×5+1+245+124\tan 6^\circ \tan 42^\circ \tan 66^\circ \tan 78^\circ = \dfrac{{\dfrac{{2 - \sqrt 5 + 1}}{4}}}{{\dfrac{{2 + \sqrt 5 - 1}}{4}}} \times \dfrac{{\dfrac{{\sqrt 5 + 1 + 2}}{4}}}{{\dfrac{{\sqrt 5 + 1 - 2}}{4}}}
tan6tan42tan66tan78=351+5×3+551\Rightarrow \tan 6^\circ \tan 42^\circ \tan 66^\circ \tan 78^\circ = \dfrac{{3 - \sqrt 5 }}{{1 + \sqrt 5 }} \times \dfrac{{3 + \sqrt 5 }}{{\sqrt 5 - 1}}
We know that
(a+b)(ab)=a2b2(a + b)(a - b) = {a^2} - {b^2}
Using this we get,
tan6tan42tan66tan78=9551\Rightarrow \tan 6^\circ \tan 42^\circ \tan 66^\circ \tan 78^\circ = \dfrac{{9 - 5}}{{5 - 1}}
tan6tan42tan66tan78=44=1\Rightarrow \tan 6^\circ \tan 42^\circ \tan 66^\circ \tan 78^\circ = \dfrac{4}{4} = 1
Hence we had proved the result.

Note: We can show that sin18=514 \sin {18^ \circ } = \dfrac{{\sqrt 5 - 1}}{4}{\text{ }}
For, consider θ=18\theta = {18^ \circ }
5θ=18×5=90\Rightarrow 5\theta = 18 \times 5 = {90^ \circ }
We can write it as
2θ+3θ=90\Rightarrow 2\theta + 3\theta = {90^ \circ }
2θ=903θ\Rightarrow 2\theta = {90^ \circ } - 3\theta
Taking sine on both sides we get,
sin2θ=sin(903θ)\Rightarrow \sin 2\theta = \sin ({90^ \circ } - 3\theta )
We know sin(90θ)=cosθ\sin ({90^ \circ } - \theta ) = \cos \theta
sin2θ=cos3θ\Rightarrow \sin 2\theta = \cos 3\theta
Also we have the trigonometric relations,
sin2θ=2sinθcosθ\sin 2\theta = 2\sin \theta \cos \theta
cos3θ=4cos3θ3cosθ\cos 3\theta = 4{\cos ^3}\theta - 3\cos \theta
Using these in the above equation we get,
2sinθcosθ=4cos3θ3cosθ\Rightarrow 2\sin \theta \cos \theta = 4{\cos ^3}\theta - 3\cos \theta
2sinθcosθ4cos3θ+3cosθ=0\Rightarrow 2\sin \theta \cos \theta - 4{\cos ^3}\theta + 3\cos \theta = 0
Taking cosθ\cos \theta common we get,
cosθ(2sinθ4cos2θ+3)=0\Rightarrow \cos \theta (2\sin \theta - 4{\cos ^2}\theta + 3) = 0
Product of two terms equal to zero means any of the terms is zero.
Since θ=18\theta = {18^ \circ }, cosθ0\cos \theta \ne 0.
So we have,
2sinθ4cos2θ+3=0\Rightarrow 2\sin \theta - 4{\cos ^2}\theta + 3 = 0
Again, cos2θ=1sin2θ{\cos ^2}\theta = 1 - {\sin ^2}\theta
2sinθ4(1sin2θ)+3=0\Rightarrow 2\sin \theta - 4(1 - {\sin ^2}\theta ) + 3 = 0
2sinθ4+4sin2θ+3=0\Rightarrow 2\sin \theta - 4 + 4{\sin ^2}\theta + 3 = 0
Simplifying we get,
2sinθ+4sin2θ1=0\Rightarrow 2\sin \theta + 4{\sin ^2}\theta - 1 = 0
4sin2θ+2sinθ1=0\Rightarrow 4{\sin ^2}\theta + 2\sin \theta - 1 = 0
So we get a quadratic equation in sinθ\sin \theta ,
A quadratic equation in the form ax2+bx+c=0a{x^2} + bx + c = 0 has the solution, x=b±b24ac2ax = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}
Solving using this we get,
sinθ=2±22(4×4×1)2×4\sin \theta = \dfrac{{ - 2 \pm \sqrt {{2^2} - (4 \times 4 \times - 1)} }}{{2 \times 4}}
sinθ=2±4+168\Rightarrow \sin \theta = \dfrac{{ - 2 \pm \sqrt {4 + 16} }}{8}
sinθ=2±208=2±258\Rightarrow \sin \theta = \dfrac{{ - 2 \pm \sqrt {20} }}{8} = \dfrac{{ - 2 \pm 2\sqrt 5 }}{8}
Dividing numerator and denominator by 22 we get,
sinθ=1±54\Rightarrow \sin \theta = \dfrac{{ - 1 \pm \sqrt 5 }}{4}
Substituting for θ\theta we get,
sin18=1±54\Rightarrow \sin {18^ \circ } = \dfrac{{ - 1 \pm \sqrt 5 }}{4}
Since sin18\sin {18^ \circ } is positive, we have
sin18=1+54\Rightarrow \sin {18^ \circ } = \dfrac{{ - 1 + \sqrt 5 }}{4}
sin18=514\Rightarrow \sin {18^ \circ } = \dfrac{{\sqrt 5 - 1}}{4}
Similarly we can show that cos36=5+14\cos 36 = \dfrac{{\sqrt 5 + 1}}{4}