Question
Question: Prove that \[\tan 6^\circ \tan 42^\circ \tan 66^\circ \tan 78^\circ = 1\]....
Prove that tan6∘tan42∘tan66∘tan78∘=1.
Solution
We can rearrange the terms in the product. Express tan in terms of sine and cosine. Then we can apply the result of addition and subtraction of cosine terms. Now substitute the known trigonometric values. Simplifying we get the left hand side equal to the right hand side.
Formula used:
We have the trigonometric relations:
tanθ=cosθsinθ
cosA−cosB=−2sin(2A+B)sin(2A−B)−−−(i)
cosA+cosB=2cos(2A+B)cos(2A−B)−−−(ii)
sin(−θ)=−sinθ
cos(−θ)=cosθ
Also we have,
(a+b)(a−b)=a2−b2
Complete step-by-step answer:
Given the expression,
tan6∘tan42∘tan66∘tan78∘
We can rearrange the terms.
tan6∘tan42∘tan66∘tan78∘=(tan66∘tan6∘)(tan78∘tan42∘)
We know that tanθ=cosθsinθ
Using this we get,
tan6∘tan42∘tan66∘tan78∘=(cos66∘sin66∘cos6∘sin6∘)(cos78∘sin78∘cos42∘sin42∘)
Multiplying and dividing by 2 we get,
tan6∘tan42∘tan66∘tan78∘=(2cos66∘2sin66∘cos6∘sin6∘)(2cos78∘2sin78∘cos42∘sin42∘)−−−∗
We have the trigonometric relations:
cosA−cosB=−2sin(2A+B)sin(2A−B)−−−(i)
cosA+cosB=2cos(2A+B)cos(2A−B)−−−(ii)
Let A=60,B=72
We get, 2A+B=260+72=2132=66
2A−B=260−72=2−12=−6
Substituting in the above result we get,
⇒ cos60−cos72=−2sin66sin(−6)
We have sin(−θ)=−sinθ
So we get,
⇒ cos60−cos72=2sin66sin6−−−(iii)
Also (ii) gives,
⇒ cos60+cos72=2cos66cos(−6)
And we have cos(−θ)=cosθ
So we get,
cos60+cos72=2cos66cos6−−−(iv)
Similarly let A=36,B=120
We get, 2A+B=236+120=2156=78
⇒ 2A−B=236−120=2−84=−42
Substituting in the above result we get,
⇒ cos36−cos120=−2sin78sin(−42)
We have sin(−θ)=−sinθ
So we get,
⇒ cos36−cos120=2sin78sin42−−−(v)
Also (ii) gives,
⇒ cos36+cos120=2cos78cos(−42)
And we have cos(−θ)=cosθ
So we get,
⇒ cos36+cos120=2cos78cos42−−−(vi)
Substituting using equations (iii),(iv),(v) and (vi) in equation ∗ we get,
tan6∘tan42∘tan66∘tan78∘=(cos60+cos72cos60−cos72)(cos36+cos120cos36−cos120)−−−∗∗
We know cos60=21 and cos120=cos(90+30)=−sin30=−21
Also 72=90−18
This gives cos72=cos(90−18)==sin18
Substituting these we get,
⇒ tan6∘tan42∘tan66∘tan78∘=(21+sin1821−sin18)×(cos36+(−21)cos36−(−21))
Simplifying we get,
⇒ tan6∘tan42∘tan66∘tan78∘=(21+sin1821−sin18)×(cos36−21cos36+21)
We have sin18=45−1 and cos36=45+1.
Substituting we get,
⇒ tan6∘tan42∘tan66∘tan78∘=21+45−121−45−1×45+1−2145+1+21
Simplifying we get,
⇒ tan6∘tan42∘tan66∘tan78∘=42+5−142−5+1×45+1−245+1+2
⇒tan6∘tan42∘tan66∘tan78∘=1+53−5×5−13+5
We know that
(a+b)(a−b)=a2−b2
Using this we get,
⇒tan6∘tan42∘tan66∘tan78∘=5−19−5
⇒tan6∘tan42∘tan66∘tan78∘=44=1
Hence we had proved the result.
Note: We can show that sin18∘=45−1
For, consider θ=18∘
⇒5θ=18×5=90∘
We can write it as
⇒2θ+3θ=90∘
⇒2θ=90∘−3θ
Taking sine on both sides we get,
⇒sin2θ=sin(90∘−3θ)
We know sin(90∘−θ)=cosθ
⇒sin2θ=cos3θ
Also we have the trigonometric relations,
sin2θ=2sinθcosθ
cos3θ=4cos3θ−3cosθ
Using these in the above equation we get,
⇒2sinθcosθ=4cos3θ−3cosθ
⇒2sinθcosθ−4cos3θ+3cosθ=0
Taking cosθ common we get,
⇒cosθ(2sinθ−4cos2θ+3)=0
Product of two terms equal to zero means any of the terms is zero.
Since θ=18∘, cosθ=0.
So we have,
⇒2sinθ−4cos2θ+3=0
Again, cos2θ=1−sin2θ
⇒2sinθ−4(1−sin2θ)+3=0
⇒2sinθ−4+4sin2θ+3=0
Simplifying we get,
⇒2sinθ+4sin2θ−1=0
⇒4sin2θ+2sinθ−1=0
So we get a quadratic equation in sinθ,
A quadratic equation in the form ax2+bx+c=0 has the solution, x=2a−b±b2−4ac
Solving using this we get,
sinθ=2×4−2±22−(4×4×−1)
⇒sinθ=8−2±4+16
⇒sinθ=8−2±20=8−2±25
Dividing numerator and denominator by 2 we get,
⇒sinθ=4−1±5
Substituting for θ we get,
⇒sin18∘=4−1±5
Since sin18∘ is positive, we have
⇒sin18∘=4−1+5
⇒sin18∘=45−1
Similarly we can show that cos36=45+1