Question
Mathematics Question on Trigonometric Functions of Sum and Difference of Two Angles
Prove that tan4x=1−6tan2x+tan4x4tanx(1−tan2x).
Answer
It is known that tan2A=1−tan2A2tanA.
∴L.H.S. = tan 4x = tan 2(2x).
=1−tan2(2x)2tan2x
=−1(1−tan2x2tanx)22(1−tan2xtanx)
=[−1(1−tan2x)24tan2x]((1−tan2x4tan2x)
=[(1−tan2x)2(1tan2x)2−4tan2x]((1−tan2x4tan2x)
=(1−tan2x)2−4tan2x4tanx(1−tan2x)
=1+tan4x−2tan2−4tan24tanx(1−tan2x)
=1−6tan2x+tan4x4tanx(1−tan2x)=R.H.S.