Question
Question: Prove that \(\tan 4x=\dfrac{4\tan x\left( 1-{{\tan }^{2}}x \right)}{1+{{\tan }^{4}}x-6{{\tan }^{2}}x...
Prove that tan4x=1+tan4x−6tan2x4tanx(1−tan2x)
Solution
Hint: Use the identity tan(2x)=1−tan2x2tanx. Write tan(4x) = tan (2(2x)) and apply the formula. Then apply the formula again and simplify to get the result. Use algebraic identity (a+b)2=a2+2ab+b2.
Alternatively, you can use tan(nx)=nC0−nC2tan2x+nC4tan4x+⋯nC1tanx−nC3tan3x+nC5tan5x+⋯
Put n = 4 in the above formula to get the result.
Alternatively, expand the expression (cosx+isinx)4 and use De Movire’s formula and equal real and imaginary parts and hence find the expression for tan4x
Complete step-by-step answer:
We have tan(4x) = tan(2(2x))
Using tan(2x)=1−tan2x2tanx, we get
tan4x=1−tan22x2tan2x
We know that tan(2x)=1−tan2x2tanx.
Using, we get
tan4x=1−(1−tan2x2tanx)22(1−tan2x2tanx)
Multiplying the numerator and denominator by (1−tan2x)2, we get
tan4x=(1−tan2x)2−4tan2x2(2tanx)(1−tan2x)
Using (a+b)2=a2+2ab+b2, we get
tan4x=1+tan4x−2tan2x−4tan2x4tanx(1−tan2x)=1+tan4x−6tan2x4tanx(1−tan2x)
Hence LHS = RHS and hence the result is proved.
Note: [1] The formulae sin2x=1+tan2x2tanx,cos2x=1+tan2x1−tan2x and tan(2x)=1−tan2x2tanx are called double angle formulae.
[2] Alternative solution: Best Method
We know tan(nx)=nC0−nC2tan2x+nC4tan4x+⋯nC1tanx−nC3tan3x+nC5tan5x+⋯
Now 4C0=1,4C1=4,4C2=6,4C3=4 and 4C4=1
Hence, we have
tan4x=1−6tan2x+tan4x4tanx−4tan3x
Hence LHS = RHS.
[3] The above result can be obtained by applying binomial theorem to the expression (cosx+isinx)n and using De Moivre's identity (cosx+isinx)n=cosnx+isinnx.
Compare Real and imaginary parts and use tannx=cosnxsinnx.
[4] Alternatively, we have
(cosx+isinx)4=cos4x+isin4x.
We know that (a+b)2=a2+2ab+b2.
Using the above formula, we get
((cosx+isinx)2)2=cos4x+isin4x⇒(cos2x−sin2x+2isinxcosx)2=cos4x+isin4x
We know that (a+b+c)2=a2+b2+c2+2ab+2bc+2ac
Using the above identity, we get
(cos2x−sin2x+2isinxcosx)2=cos4x+isin4x⇒cos4x+sin4x−4sin2xcos2x−2cos2xsin2x+4isinxcos3x−4isin3xcosx=cos4x+isin4x
Comparing Real and imaginary parts, we have
cos4x=cos4x+sin4x−6sin2xcos2x and sin4x=sinxcos3x−cosxsin3x
Hence, tan4x=cos4x+sin4x−6sin2xcos2x4sinxcos3x−4cosxsin3x
Dividing numerator and denominator by cos4x, we get
tan4x=1−6tan2x+tan4x4tanx−4tan3x
Hence LHS = RHS and hence the result is proved.