Solveeit Logo

Question

Question: Prove that \(\tan 4x=\dfrac{4\tan x\left( 1-{{\tan }^{2}}x \right)}{1+{{\tan }^{4}}x-6{{\tan }^{2}}x...

Prove that tan4x=4tanx(1tan2x)1+tan4x6tan2x\tan 4x=\dfrac{4\tan x\left( 1-{{\tan }^{2}}x \right)}{1+{{\tan }^{4}}x-6{{\tan }^{2}}x}

Explanation

Solution

Hint: Use the identity tan(2x)=2tanx1tan2x\tan \left( 2x \right)=\dfrac{2\tan x}{1-{{\tan }^{2}}x}. Write tan(4x) = tan (2(2x)) and apply the formula. Then apply the formula again and simplify to get the result. Use algebraic identity (a+b)2=a2+2ab+b2{{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}.
Alternatively, you can use tan(nx)=nC1tanxnC3tan3x+nC5tan5x+nC0nC2tan2x+nC4tan4x+\tan \left( nx \right)=\dfrac{^{n}{{C}_{1}}\tan x{{-}^{n}}{{C}_{3}}{{\tan }^{3}}x{{+}^{n}}{{C}_{5}}{{\tan }^{5}}x+\cdots }{^{n}{{C}_{0}}{{-}^{n}}{{C}_{2}}{{\tan }^{2}}x{{+}^{n}}{{C}_{4}}{{\tan }^{4}}x+\cdots }
Put n = 4 in the above formula to get the result.
Alternatively, expand the expression (cosx+isinx)4{{\left( \cos x+i\sin x \right)}^{4}} and use De Movire’s formula and equal real and imaginary parts and hence find the expression for tan4x

Complete step-by-step answer:
We have tan(4x) = tan(2(2x))
Using tan(2x)=2tanx1tan2x\tan \left( 2x \right)=\dfrac{2\tan x}{1-{{\tan }^{2}}x}, we get
tan4x=2tan2x1tan22x\tan 4x=\dfrac{2\tan 2x}{1-{{\tan }^{2}}2x}
We know that tan(2x)=2tanx1tan2x\tan \left( 2x \right)=\dfrac{2\tan x}{1-{{\tan }^{2}}x}.
Using, we get
tan4x=2(2tanx1tan2x)1(2tanx1tan2x)2\tan 4x=\dfrac{2\left( \dfrac{2\tan x}{1-{{\tan }^{2}}x} \right)}{1-{{\left( \dfrac{2\tan x}{1-{{\tan }^{2}}x} \right)}^{2}}}
Multiplying the numerator and denominator by (1tan2x)2{{\left( 1-{{\tan }^{2}}x \right)}^{2}}, we get
tan4x=2(2tanx)(1tan2x)(1tan2x)24tan2x\tan 4x=\dfrac{2\left( 2\tan x \right)\left( 1-{{\tan }^{2}}x \right)}{{{\left( 1-{{\tan }^{2}}x \right)}^{2}}-4{{\tan }^{2}}x}
Using (a+b)2=a2+2ab+b2{{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}, we get
tan4x=4tanx(1tan2x)1+tan4x2tan2x4tan2x=4tanx(1tan2x)1+tan4x6tan2x\tan 4x=\dfrac{4\tan x\left( 1-{{\tan }^{2}}x \right)}{1+{{\tan }^{4}}x-2{{\tan }^{2}}x-4{{\tan }^{2}}x}=\dfrac{4\tan x\left( 1-{{\tan }^{2}}x \right)}{1+{{\tan }^{4}}x-6{{\tan }^{2}}x}
Hence LHS = RHS and hence the result is proved.

Note: [1] The formulae sin2x=2tanx1+tan2x,cos2x=1tan2x1+tan2x\sin 2x=\dfrac{2\tan x}{1+{{\tan }^{2}}x},\cos 2x=\dfrac{1-{{\tan }^{2}}x}{1+{{\tan }^{2}}x} and tan(2x)=2tanx1tan2x\tan \left( 2x \right)=\dfrac{2\tan x}{1-{{\tan }^{2}}x} are called double angle formulae.
[2] Alternative solution: Best Method
We know tan(nx)=nC1tanxnC3tan3x+nC5tan5x+nC0nC2tan2x+nC4tan4x+\tan \left( nx \right)=\dfrac{^{n}{{C}_{1}}\tan x{{-}^{n}}{{C}_{3}}{{\tan }^{3}}x{{+}^{n}}{{C}_{5}}{{\tan }^{5}}x+\cdots }{^{n}{{C}_{0}}{{-}^{n}}{{C}_{2}}{{\tan }^{2}}x{{+}^{n}}{{C}_{4}}{{\tan }^{4}}x+\cdots }
Now 4C0=1,4C1=4,4C2=6,4C3=4^{4}{{C}_{0}}=1{{,}^{4}}{{C}_{1}}=4{{,}^{4}}{{C}_{2}}=6{{,}^{4}}{{C}_{3}}=4 and 4C4=1^{4}{{C}_{4}}=1
Hence, we have
tan4x=4tanx4tan3x16tan2x+tan4x\tan 4x=\dfrac{4\tan x-4{{\tan }^{3}}x}{1-6{{\tan }^{2}}x+{{\tan }^{4}}x}
Hence LHS = RHS.
[3] The above result can be obtained by applying binomial theorem to the expression (cosx+isinx)n{{\left( \cos x+i\sin x \right)}^{n}} and using De Moivre's identity (cosx+isinx)n=cosnx+isinnx{{\left( \cos x+i\sin x \right)}^{n}}=\cos nx+i\sin nx.
Compare Real and imaginary parts and use tannx=sinnxcosnx\tan nx=\dfrac{\sin nx}{\cos nx}.
[4] Alternatively, we have
(cosx+isinx)4=cos4x+isin4x{{\left( \cos x+i\sin x \right)}^{4}}=\cos 4x+i\sin 4x.
We know that (a+b)2=a2+2ab+b2{{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}.
Using the above formula, we get
((cosx+isinx)2)2=cos4x+isin4x (cos2xsin2x+2isinxcosx)2=cos4x+isin4x \begin{aligned} & {{\left( {{\left( \cos x+i\sin x \right)}^{2}} \right)}^{2}}=\cos 4x+i\sin 4x \\\ & \Rightarrow {{\left( {{\cos }^{2}}x-{{\sin }^{2}}x+2i\sin x\cos x \right)}^{2}}=\cos 4x+i\sin 4x \\\ \end{aligned}
We know that (a+b+c)2=a2+b2+c2+2ab+2bc+2ac{{\left( a+b+c \right)}^{2}}={{a}^{2}}+{{b}^{2}}+{{c}^{2}}+2ab+2bc+2ac
Using the above identity, we get
(cos2xsin2x+2isinxcosx)2=cos4x+isin4x cos4x+sin4x4sin2xcos2x2cos2xsin2x+4isinxcos3x4isin3xcosx=cos4x+isin4x \begin{aligned} & {{\left( {{\cos }^{2}}x-{{\sin }^{2}}x+2i\sin x\cos x \right)}^{2}}=\cos 4x+i\sin 4x \\\ & \Rightarrow {{\cos }^{4}}x+{{\sin }^{4}}x-4{{\sin }^{2}}x{{\cos }^{2}}x-2{{\cos }^{2}}x{{\sin }^{2}}x+4i\sin x{{\cos }^{3}}x-4i{{\sin }^{3}}x\cos x=\cos 4x+i\sin 4x \\\ \end{aligned}
Comparing Real and imaginary parts, we have
cos4x=cos4x+sin4x6sin2xcos2x\cos 4x={{\cos }^{4}}x+{{\sin }^{4}}x-6{{\sin }^{2}}x{{\cos }^{2}}x and sin4x=sinxcos3xcosxsin3x\sin 4x=\sin x{{\cos }^{3}}x-\cos x{{\sin }^{3}}x
Hence, tan4x=4sinxcos3x4cosxsin3xcos4x+sin4x6sin2xcos2x\tan 4x=\dfrac{4\sin x{{\cos }^{3}}x-4\cos x{{\sin }^{3}}x}{{{\cos }^{4}}x+{{\sin }^{4}}x-6{{\sin }^{2}}x{{\cos }^{2}}x}
Dividing numerator and denominator by cos4x{{\cos }^{4}}x, we get
tan4x=4tanx4tan3x16tan2x+tan4x\tan 4x=\dfrac{4\tan x-4{{\tan }^{3}}x}{1-6{{\tan }^{2}}x+{{\tan }^{4}}x}
Hence LHS = RHS and hence the result is proved.