Solveeit Logo

Question

Question: Prove that \(\tan 20^\circ \tan 40^\circ \tan 60^\circ \tan 80^\circ = 3\)....

Prove that tan20tan40tan60tan80=3\tan 20^\circ \tan 40^\circ \tan 60^\circ \tan 80^\circ = 3.

Explanation

Solution

First, break tan80\tan 80^\circ and tan20\tan 20^\circ in terms of tan60\tan 60^\circ and tan20\tan 20^\circ by using a basic formula tan(A±B)=tanA±tanB1tanAtanB\tan \left( {A \pm B} \right) = \dfrac{{\tan A \pm \tan B}}{{1 \mp \tan A\tan B}}. After that multiply both the equations and simplify it. Again, multiply by tan20\tan 20^\circ and simplify it. The equation will be in the form 3tanAtan3A13tan2A\dfrac{{3\tan A - {{\tan }^3}A}}{{1 - 3{{\tan }^2}A}} which can be replaced by tan3A\tan 3A. Now, the term tan20tan40tan80\tan 20^\circ \tan 40^\circ \tan 80^\circ will be equal to tan60\tan 60^\circ . So, the termtan20tan40tan60tan80\tan 20^\circ \tan 40^\circ \tan 60^\circ \tan 80^\circ is equal to (tan60)2{\left( {\tan 60^\circ } \right)^2} whose value is 3.

Formula used:
tan(A+B)=tanA+tanB1tanAtanB\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}
tan(AB)=tanAtanB1+tanAtanB\tan \left( {A - B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}
tan3A=3tanAtan3A13tan2A\tan 3A = \dfrac{{3\tan A - {{\tan }^3}A}}{{1 - 3{{\tan }^2}A}}

Complete step-by-step answer:
To prove:- tan20tan40tan60tan80=3\tan 20^\circ \tan 40^\circ \tan 60^\circ \tan 80^\circ = 3
Break-in terms of tan20\tan 20^\circ and tan60\tan 60^\circ by using tan(A+B)=tanA+tanB1tanAtanB\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}},
tan80=tan60+tan201tan60tan20\tan 80^\circ = \dfrac{{\tan 60^\circ + \tan 20^\circ }}{{1 - \tan 60^\circ \tan 20^\circ }}
Substitute tan60=3\tan 60^\circ = \sqrt 3 we get,
tan80=3+tan2013tan20\tan 80^\circ = \dfrac{{\sqrt 3 + \tan 20^\circ }}{{1 - \sqrt 3 \tan 20^\circ }} …..(1)
Now, break-in tan40\tan 40^\circ in terms of tan20\tan 20^\circ and tan60\tan 60^\circ by using tan(AB)=tanAtanB1+tanAtanB\tan \left( {A - B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}},
tan40=tan60tan201+tan60tan20\tan 40^\circ = \dfrac{{\tan 60^\circ - \tan 20^\circ }}{{1 + \tan 60^\circ \tan 20^\circ }}
Substitute tan60=3\tan 60^\circ = \sqrt 3 we get,
tan40=3tan201+3tan20\tan 40^\circ = \dfrac{{\sqrt 3 - \tan 20^\circ }}{{1 + \sqrt 3 \tan 20^\circ }} …..(2)
Now multiply equation (1) and (2),
tan40tan80=3tan201+3tan20×3+tan2013tan20\tan 40^\circ \tan 80^\circ = \dfrac{{\sqrt 3 - \tan 20^\circ }}{{1 + \sqrt 3 \tan 20^\circ }} \times \dfrac{{\sqrt 3 + \tan 20^\circ }}{{1 - \sqrt 3 \tan 20^\circ }}
Multiply the values of the numerator and denominator,
tan40tan80=(3)2(tan20)2(1)2(3tan20)2\tan 40^\circ \tan 80^\circ = \dfrac{{{{\left( {\sqrt 3 } \right)}^2} - {{\left( {\tan 20^\circ } \right)}^2}}}{{{{\left( 1 \right)}^2} - {{\left( {\sqrt 3 \tan 20^\circ } \right)}^2}}}
Open brackets and square the terms inside corresponding brackets,
tan40tan80=3tan22013tan220\tan 40^\circ \tan 80^\circ = \dfrac{{3 - {{\tan }^2}20^\circ }}{{1 - 3{{\tan }^2}20^\circ }}
Multiply both sides by tan20\tan 20^\circ ,
tan20tan40tan80=tan20×3tan22013tan220\tan 20^\circ \tan 40^\circ \tan 80^\circ = \tan 20^\circ \times \dfrac{{3 - {{\tan }^2}20^\circ }}{{1 - 3{{\tan }^2}20^\circ }}
Multiply tan20\tan 20^\circ in the numerator,
tan20tan40tan80=3tan20tan32013tan220\tan 20^\circ \tan 40^\circ \tan 80^\circ = \dfrac{{3\tan 20^\circ - {{\tan }^3}20^\circ }}{{1 - 3{{\tan }^2}20^\circ }}
As we know that tan3A=3tanAtan3A13tan2A\tan 3A = \dfrac{{3\tan A - {{\tan }^3}A}}{{1 - 3{{\tan }^2}A}}. Then, the term in the right-hand side will be replaced,
tan20tan40tan80=tan(3×20)\tan 20^\circ \tan 40^\circ \tan 80^\circ = \tan \left( {3 \times 20^\circ } \right)
Multiply both sides by tan60\tan 60^\circ we get,
tan20tan40tan60tan80=(tan60)2\tan 20^\circ \tan 40^\circ \tan 60^\circ \tan 80^\circ = {\left( {\tan 60^\circ } \right)^2}
Substitute the value of tan60\tan 60^\circ on the right side of the equation,
tan20tan40tan60tan80=(3)2\tan 20^\circ \tan 40^\circ \tan 60^\circ \tan 80^\circ = {\left( {\sqrt 3 } \right)^2}
Open the bracket and square the term on the right side,
tan20tan40tan60tan80=3\tan 20^\circ \tan 40^\circ \tan 60^\circ \tan 80^\circ = 3
Hence, it is proved.

Note: The students are likely to make mistakes by converting tan in form of sin and cos. It will make the problem complicated and lengthy.
Trigonometry is concerned with specific functions of angles and their application to calculations. There are six functions of an angle commonly used in trigonometry. Their names and abbreviations are sine (sin), cosine (cos), tangent (tan), cotangent (cot), secant (sec), and cosecant (cosec).