Solveeit Logo

Question

Question: Prove that: \( {{\tan }^{2}}A-{{\sin }^{2}}A={{\sin }^{4}}A{{\sec }^{2}}A \)...

Prove that:
tan2Asin2A=sin4Asec2A{{\tan }^{2}}A-{{\sin }^{2}}A={{\sin }^{4}}A{{\sec }^{2}}A

Explanation

Solution

We know that sin2θ+cos2θ=1{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1.
Convert the given expressions in terms of sinA\sin A and cosA\cos A by using the definition tanθ=sinθcosθ\tan \theta =\dfrac{sin\theta }{\cos \theta }.
We can convert secA\sec A in terms of cosA\cos A by using the definition secθ=1cosθ\sec \theta =\dfrac{1}{\cos \theta }.

Complete step by step answer:
Let us look at the LHS and RHS of the given identity one by one.
LHS = tan2Asin2A{{\tan }^{2}}A-{{\sin }^{2}}A
Using the definition tanθ=sinθcosθ\tan \theta =\dfrac{sin\theta }{\cos \theta }, we get:
= sin2Acos2Asin2A\dfrac{{{\sin }^{2}}A}{{{\cos }^{2}}A}-{{\sin }^{2}}A
Taking out sin2A{{\sin }^{2}}A and 1cos2A\dfrac{1}{{{\cos }^{2}}A} as common factors, we get:
= sin2Acos2A(1cos2A)\dfrac{{{\sin }^{2}}A}{{{\cos }^{2}}A}\left( 1-{{\cos }^{2}}A \right)
Using sin2θ+cos2θ=1{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1, we get:
= sin2Acos2A(sin2A+cos2Acos2A)\dfrac{{{\sin }^{2}}A}{{{\cos }^{2}}A}\left( {{\sin }^{2}}A+{{\cos }^{2}}A-{{\cos }^{2}}A \right)
= sin2Acos2A(sin2A)\dfrac{{{\sin }^{2}}A}{{{\cos }^{2}}A}\left( {{\sin }^{2}}A \right)
= 1cos2A×sin4A\dfrac{1}{{{\cos }^{2}}A}\times {{\sin }^{4}}A
And,
RHS = sin4Asec2A{{\sin }^{4}}A{{\sec }^{2}}A
Using the definition secθ=1cosθ\sec \theta =\dfrac{1}{\cos \theta }, we get:
= sin4A×1cos2A{{\sin }^{4}}A\times \dfrac{1}{{{\cos }^{2}}A}

Since LHS = RHS, hence proved.

Note: In a right-angled triangle with length of the side opposite to angle θ as perpendicular (P), base (B) and hypotenuse (H):
sinθ=PH,cosθ=BH,tanθ=PB\sin \theta =\dfrac{P}{H},\cos \theta =\dfrac{B}{H},\tan \theta =\dfrac{P}{B}
P2+B2=H2{{P}^{2}}+{{B}^{2}}={{H}^{2}} (Pythagoras' Theorem)
The identities sin2θ+cos2θ=1{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1, tan2θ+1=sec2θ{{\tan }^{2}}\theta +1={{\sec }^{2}}\theta and 1+cot2θ=csc2θ1+{{\cot }^{2}}\theta ={{\csc }^{2}}\theta are equivalent to each other and they are a direct result of the Pythagoras' theorem.