Solveeit Logo

Question

Question: Prove that \({{\tan }^{2}}A{{\sec }^{2}}B-{{\sec }^{2}}A{{\tan }^{2}}B={{\tan }^{2}}A-{{\tan }^{2}}B...

Prove that tan2Asec2Bsec2Atan2B=tan2Atan2B{{\tan }^{2}}A{{\sec }^{2}}B-{{\sec }^{2}}A{{\tan }^{2}}B={{\tan }^{2}}A-{{\tan }^{2}}B.

Explanation

Solution

Hint: Use the trigonometric identity sec2x=1+tan2x{{\sec }^{2}}x=1+{{\tan }^{2}}x. Hence, express all sec terms in terms of tan and simplify. Alternatively, convert into sines and cosines and simplify.

Complete step-by-step solution -

Trigonometric ratios:
There are six trigonometric ratios defined on an angle of a right-angled triangle, viz sine, cosine, tangent, cotangent, secant and cosecant.
The sine of an angle is defined as the ratio of the opposite side to the hypotenuse.
The cosine of an angle is defined as the ratio of the adjacent side to the hypotenuse.
The tangent of an angle is defined as the ratio of the opposite side to the adjacent side.
The cotangent of an angle is defined as the ratio of the adjacent side to the opposite side.
The secant of an angle is defined as the ratio of the hypotenuse to the adjacent side.
The cosecant of an angle is defined as the ratio of the hypotenuse to the adjacent side.
Observe that sine and cosecant are multiplicative inverses of each other, cosine and secant are multiplicative inverses of each other, and tangent and cotangent are multiplicative inverses of each other.
Hence secxcosx=1,sinxcscx=1\sec x\cos x=1,\sin x\csc x=1 and tanxcotx=1\tan x\cot x=1.
Trigonometric identities:
Pythagorean Identities:
sin2x+cos2x=1,sec2x=1+tan2x{{\sin }^{2}}x+{{\cos }^{2}}x=1,{{\sec }^{2}}x=1+{{\tan }^{2}}x and csc2x=1+cot2x{{\csc }^{2}}x=1+{{\cot }^{2}}x. These identities are a consequence of Pythagoras theorem in a right-angled triangle.
Now, we have
LHS =tan2Asec2Btan2Bsec2A={{\tan }^{2}}A{{\sec }^{2}}B-{{\tan }^{2}}B{{\sec }^{2}}A
Using sec2x=1+tan2x{{\sec }^{2}}x=1+{{\tan }^{2}}x, we get
LHS =tan2A(1+tan2B)tan2B(1+tan2A)={{\tan }^{2}}A\left( 1+{{\tan }^{2}}B \right)-{{\tan }^{2}}B\left( 1+{{\tan }^{2}}A \right)
Using the distributive property of multiplication over addition, i.e. a(b+c) = ab+ac, we get
LHS =tan2A+tan2Atan2Btan2Btan2Atan2B={{\tan }^{2}}A+{{\tan }^{2}}A{{\tan }^{2}}B-{{\tan }^{2}}B-{{\tan }^{2}}A{{\tan }^{2}}B
Hence, we have
LHS =tan2Atan2B={{\tan }^{2}}A-{{\tan }^{2}}B
Hence LHS = RHS.
Hence proved.

Note: Alternatively, we have tanx=sinxcosx\tan x=\dfrac{\sin x}{\cos x} and secx=1cosx\sec x=\dfrac{1}{\cos x}.
Using the above-mentioned formulae, we get
LHS =sin2Acos2Acos2Bsin2Bcos2Acos2B=\dfrac{{{\sin }^{2}}A}{{{\cos }^{2}}A{{\cos }^{2}}B}-\dfrac{{{\sin }^{2}}B}{{{\cos }^{2}}A{{\cos }^{2}}B}
Taking cos2Acos2B{{\cos }^{2}}A{{\cos }^{2}}B as LCM, we get
LHS =sin2Asin2Bcos2Acos2B=\dfrac{{{\sin }^{2}}A-{{\sin }^{2}}B}{{{\cos }^{2}}A{{\cos }^{2}}B}
Now, we know that sin2A+cos2A=1{{\sin }^{2}}A+{{\cos }^{2}}A=1
Using, we get
LHS =sin2A(sin2B+cos2B)sin2B(sin2A+cos2A)cos2Acos2B=\dfrac{{{\sin }^{2}}A\left( {{\sin }^{2}}B+{{\cos }^{2}}B \right)-{{\sin }^{2}}B\left( {{\sin }^{2}}A+{{\cos }^{2}}A \right)}{{{\cos }^{2}}A{{\cos }^{2}}B}
Using the distributive property of multiplication over addition, we get
LHS =sin2Acos2B+sin2Asin2Bsin2Asin2Bsin2Bcos2Acos2Acos2B=\dfrac{{{\sin }^{2}}A{{\cos }^{2}}B+{{\sin }^{2}}A{{\sin }^{2}}B-{{\sin }^{2}}A{{\sin }^{2}}B-{{\sin }^{2}}B{{\cos }^{2}}A}{{{\cos }^{2}}A{{\cos }^{2}}B}
We know that a+bc=ac+bc\dfrac{a+b}{c}=\dfrac{a}{c}+\dfrac{b}{c}
Using the above identity, we get
LHS =sin2Acos2Bcos2Acos2Bsin2Bcos2Acos2Acos2B=\dfrac{{{\sin }^{2}}A{{\cos }^{2}}B}{{{\cos }^{2}}A{{\cos }^{2}}B}-\dfrac{{{\sin }^{2}}B{{\cos }^{2}}A}{{{\cos }^{2}}A{{\cos }^{2}}B}
Hence, we have
LHS =sin2Acos2Asin2Bcos2B=\dfrac{{{\sin }^{2}}A}{{{\cos }^{2}}A}-\dfrac{{{\sin }^{2}}B}{{{\cos }^{2}}B}
Using tanx=sinxcosx\tan x=\dfrac{\sin x}{\cos x}, we get
LHS =tan2Atan2B={{\tan }^{2}}A-{{\tan }^{2}}B
Hence LHS = RHS and the given identity is proved.