Solveeit Logo

Question

Question: Prove that \(tan {15^ \circ } + \tan {30^ \circ } + \tan {15^ \circ }\tan {30^ \circ } = 1\)...

Prove that tan15+tan30+tan15tan30=1tan {15^ \circ } + \tan {30^ \circ } + \tan {15^ \circ }\tan {30^ \circ } = 1

Explanation

Solution

Hint: Here use trigonometric identities and formulas on the LHS part of the equation and simplify using basic trigonometric angles to prove LHS=RHS.

Complete step-by-step answer:

We know that tan45=1tan {45^ \circ } = 1

We can write tan45=tan(30+15)tan {45^ \circ } = \tan ({30^ \circ } + {15^ \circ })

We also know that tan(A+B)=tanA+tanB1tanAtanBtan(A + B) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}

By using this we can write

tan(30+15)=tan30+tan151tan30tan15=tan45=1\Rightarrow \tan ({30^ \circ } + {15^ \circ }) = \dfrac{{\tan {{30}^ \circ } + \tan {{15}^ \circ }}}{{1 - \tan {{30}^ \circ }\tan {{15}^ \circ }}} = \tan {45^ \circ } = 1

By solving above equation

tan30+tan15=1tan30tan15\Rightarrow \tan {30^ \circ } + \tan {15^ \circ } = 1 - \tan {30^ \circ }\tan {15^ \circ }

By rearranging the equation we get the result

tan30+tan15+tan30tan15=1\Rightarrow \tan {30^ \circ } + \tan {15^ \circ } + \tan {30^ \circ }\tan {15^ \circ } = 1

Hence Proved

Note: - In such a type of question always try to apply the formula of tan(A+B)tan(A + B) or tan(AB)tan(A - B) and put the angles that are given in question so we can prove it.