Solveeit Logo

Question

Question: Prove that \[{\tan ^{ - 1}}x + {\tan ^{ - 1}}y = {\tan ^{ - 1}}\left( {\dfrac{{x + y}}{{1 - xy}}} \r...

Prove that tan1x+tan1y=tan1(x+y1xy){\tan ^{ - 1}}x + {\tan ^{ - 1}}y = {\tan ^{ - 1}}\left( {\dfrac{{x + y}}{{1 - xy}}} \right) where xy<1xy < 1

Explanation

Solution

In this question, we will proceed by writing the given data and then consider the R.H.S part of the given equation. Then use substitution method along with trigonometry formula to prove that the R.H.S and L.H.S are equal.

Complete step by step answer:
Here we have to prove that tan1x+tan1y=tan1(x+y1xy){\tan ^{ - 1}}x + {\tan ^{ - 1}}y = {\tan ^{ - 1}}\left( {\dfrac{{x + y}}{{1 - xy}}} \right) where xy<1xy < 1
Now consider the RHS part i.e., tan1(x+y1xy){\tan ^{ - 1}}\left( {\dfrac{{x + y}}{{1 - xy}}} \right)
Let x=tanθθ=tan1xx = \tan \theta \Rightarrow \theta = {\tan ^{ - 1}}x and y=tanαα=tan1yy = \tan \alpha \Rightarrow \alpha = {\tan ^{ - 1}}y
So, we have RHS as
R.H.S=tan1(tanθ+tanα1tanθtanα)\Rightarrow {\text{R}}{\text{.H}}{\text{.S}} = {\tan ^{ - 1}}\left( {\dfrac{{\tan \theta + \tan \alpha }}{{1 - \tan \theta \tan \alpha }}} \right)
We know that, tan(A+B)=tanA+tanB1tanAtanB\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}. So, using this formula we have
R.H.S=tan1(tan(θ+α))\Rightarrow {\text{R}}{\text{.H}}{\text{.S}} = {\tan ^{ - 1}}\left( {\tan \left( {\theta + \alpha } \right)} \right)
Also, we know that tan1(tanA)=A{\tan ^{ - 1}}\left( {\tan A} \right) = A. So, using this formula we have
R.H.S=θ+α\Rightarrow {\text{R}}{\text{.H}}{\text{.S}} = \theta + \alpha
Resubstituting the values of θ\theta and α\alpha , we have

R.H.S=tan1x+tan1y R.H.S=L.H.S  \Rightarrow {\text{R}}{\text{.H}}{\text{.S}} = {\tan ^{ - 1}}x + {\tan ^{ - 1}}y \\\ \therefore {\text{R}}{\text{.H}}{\text{.S}} = {\text{L}}{\text{.H}}{\text{.S}} \\\

Hence proved.

Note: Here we have used the trigonometry formulae tan(A+B)=tanA+tanB1tanAtanB\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}} and tan1(tanA)=A{\tan ^{ - 1}}\left( {\tan A} \right) = A. So, for solving these types of problems always remember the formulae in trigonometry and inverse trigonometry.