Solveeit Logo

Question

Question: Prove that \[{{\tan }^{-1}}x+{{\tan }^{-1}}\left( \dfrac{2x}{1-{{x}^{2}}} \right)={{\tan }^{-1}}\...

Prove that
tan1x+tan1(2x1x2)=tan1(3xx313x2){{\tan }^{-1}}x+{{\tan }^{-1}}\left( \dfrac{2x}{1-{{x}^{2}}} \right)={{\tan }^{-1}}\left( \dfrac{3x-{{x}^{3}}}{1-3{{x}^{2}}} \right)

Explanation

Solution

Hint: First expand the given expression in left hand side using the formula for expansion of tan1x+tan1y{{\tan }^{-1}}x+{{\tan }^{-1}}ynow substitute the values of x , y according to given expression and do the basic mathematical operations like addition and multiplication to get the required expression in the right hand side

Complete step-by-step answer:

First take the left hand side that is tan1x+tan1(2x1x2){{\tan }^{-1}}x+{{\tan }^{-1}}\left( \dfrac{2x}{1-{{x}^{2}}} \right)
We know that the formula for tan1x+tan1y{{\tan }^{-1}}x+{{\tan }^{-1}}yis given by tan1x+tan1y=tan1(x+y1xy){{\tan }^{-1}}x+{{\tan }^{-1}}y={{\tan }^{-1}}\left( \dfrac{x+y}{1-xy} \right)
Now applying the above formula we will get,
=tan1((x)+(2x1x2)1(x)(2x1x2))={{\tan }^{-1}}\left( \dfrac{(x)+\left( \dfrac{2x}{1-{{x}^{2}}} \right)}{1-\left( x \right)\left( \dfrac{2x}{1-{{x}^{2}}} \right)} \right). . . . . . . . . . . . . . . . . . . . . . . .(1)
=tan1(xx3+2x1x21x22x21x2)={{\tan }^{-1}}\left( \dfrac{\dfrac{x-{{x}^{3}}+2x}{1-{{x}^{2}}}}{\dfrac{1-{{x}^{2}}-2{{x}^{2}}}{1-{{x}^{2}}}} \right) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(2)
=tan1(3xx313x2)={{\tan }^{-1}}\left( \dfrac{3x-{{x}^{3}}}{1-3{{x}^{2}}} \right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3)
Hence proved that left hand side is equal to right hand side
Hence proved that tan1x+tan1(2x1x2)=tan1(3xx313x2){{\tan }^{-1}}x+{{\tan }^{-1}}\left( \dfrac{2x}{1-{{x}^{2}}} \right)={{\tan }^{-1}}\left( \dfrac{3x-{{x}^{3}}}{1-3{{x}^{2}}} \right)

Note: If xy<1,tan1x+tan1y=tan1(x+y1xy)xy<1,{{\tan }^{-1}}x+{{\tan }^{-1}}y={{\tan }^{-1}}\left( \dfrac{x+y}{1-xy} \right)and if xy>1,tan1x+tan1y=π+tan1(x+y1xy)xy>1,{{\tan }^{-1}}x+{{\tan }^{-1}}y=\pi +{{\tan }^{-1}}\left( \dfrac{x+y}{1-xy} \right).Since the trigonometric functions are periodic functions, these functions are not bijections in their natural domains. We have used this formula xy<1,tan1x+tan1y=tan1(x+y1xy)xy<1,{{\tan }^{-1}}x+{{\tan }^{-1}}y={{\tan }^{-1}}\left( \dfrac{x+y}{1-xy} \right) because if we solve xy we will get the value < 1.