Question
Question: Prove that \[{{\tan }^{-1}}x+{{\tan }^{-1}}\left( \dfrac{2x}{1-{{x}^{2}}} \right)={{\tan }^{-1}}\...
Prove that
tan−1x+tan−1(1−x22x)=tan−1(1−3x23x−x3)
Solution
Hint: First expand the given expression in left hand side using the formula for expansion of tan−1x+tan−1ynow substitute the values of x , y according to given expression and do the basic mathematical operations like addition and multiplication to get the required expression in the right hand side
Complete step-by-step answer:
First take the left hand side that is tan−1x+tan−1(1−x22x)
We know that the formula for tan−1x+tan−1yis given by tan−1x+tan−1y=tan−1(1−xyx+y)
Now applying the above formula we will get,
=tan−11−(x)(1−x22x)(x)+(1−x22x). . . . . . . . . . . . . . . . . . . . . . . .(1)
=tan−11−x21−x2−2x21−x2x−x3+2x . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(2)
=tan−1(1−3x23x−x3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3)
Hence proved that left hand side is equal to right hand side
Hence proved that tan−1x+tan−1(1−x22x)=tan−1(1−3x23x−x3)
Note: If xy<1,tan−1x+tan−1y=tan−1(1−xyx+y)and if xy>1,tan−1x+tan−1y=π+tan−1(1−xyx+y).Since the trigonometric functions are periodic functions, these functions are not bijections in their natural domains. We have used this formula xy<1,tan−1x+tan−1y=tan−1(1−xyx+y) because if we solve xy we will get the value < 1.