Solveeit Logo

Question

Question: Prove that \[{{\tan }^{-1}}\left[ \dfrac{\sqrt{1+x}-\sqrt{1-x}}{\sqrt{1+x}+\sqrt{1-x}} \right]=\dfra...

Prove that tan1[1+x1x1+x+1x]=π412cos1x,12x1.{{\tan }^{-1}}\left[ \dfrac{\sqrt{1+x}-\sqrt{1-x}}{\sqrt{1+x}+\sqrt{1-x}} \right]=\dfrac{\pi }{4}-\dfrac{1}{2}{{\cos }^{-1}}x,\dfrac{-1}{\sqrt{2}}\le x\le 1.

Explanation

Solution

To simplify tan1[1+x1x1+x+1x]{{\tan }^{-1}}\left[ \dfrac{\sqrt{1+x}-\sqrt{1-x}}{\sqrt{1+x}+\sqrt{1-x}} \right] we put x=cos2θx=\cos 2\theta and then use 1+cos2θ=2cos2θ1+\cos 2\theta =2{{\cos }^{2}}\theta and 1cos2θ=2sin2θ.1-\cos 2\theta =2{{\sin }^{2}}\theta . We will simplify the given expression at last and we will compare all the terms using tanAtanB1+tanAtanB=tan(AB).\dfrac{\tan A-\tan B}{1+\tan A\tan B}=\tan \left( A-B \right). At last, we will shift again x=cos2θx=\cos 2\theta to get the required solution.

Complete step by step answer:
We have tan1[1+x1x1+x+1x]{{\tan }^{-1}}\left[ \dfrac{\sqrt{1+x}-\sqrt{1-x}}{\sqrt{1+x}+\sqrt{1-x}} \right] and we have to show that the value is equal to π4+12cos1x.\dfrac{\pi }{4}+\dfrac{1}{2}{{\cos }^{-1}}x. We will first simplify tan1[1+x1x1+x+1x]{{\tan }^{-1}}\left[ \dfrac{\sqrt{1+x}-\sqrt{1-x}}{\sqrt{1+x}+\sqrt{1-x}} \right] and then using the simplified term, we will solve further. We will start with the assumption that we have x=cos2θ,x=\cos 2\theta , we will use this because 1+cos2θ=2cos2θ1+\cos 2\theta =2{{\cos }^{2}}\theta and 1cos2θ=2sin2θ.1-\cos 2\theta =2{{\sin }^{2}}\theta .
Now, we will put x=cos2θx=\cos 2\theta in [1+x1x1+x+1x].\left[ \dfrac{\sqrt{1+x}-\sqrt{1-x}}{\sqrt{1+x}+\sqrt{1-x}} \right]. We will get,
1+x1x1+x+1x=1+cos2θ1cos2θ1+cos2θ+1cos2θ\dfrac{\sqrt{1+x}-\sqrt{1-x}}{\sqrt{1+x}+\sqrt{1-x}}=\dfrac{\sqrt{1+\cos 2\theta }-\sqrt{1-\cos 2\theta }}{\sqrt{1+\cos 2\theta }+\sqrt{1-\cos 2\theta }}
As, 1+cos2θ=2cos2θ1+\cos 2\theta =2{{\cos }^{2}}\theta and 1cos2θ=2sin2θ,1-\cos 2\theta =2{{\sin }^{2}}\theta , so we get,
1+x1x1+x+1x=2cos2θ2sin2θ2cos2θ+2sin2θ\Rightarrow \dfrac{\sqrt{1+x}-\sqrt{1-x}}{\sqrt{1+x}+\sqrt{1-x}}=\dfrac{\sqrt{2{{\cos }^{2}}\theta }-\sqrt{2{{\sin }^{2}}\theta }}{\sqrt{2{{\cos }^{2}}\theta }+\sqrt{2{{\sin }^{2}}\theta }}
Simplifying, we get,
1+x1x1+x+1x=2cosθ2sinθ2cosθ+2sinθ\Rightarrow \dfrac{\sqrt{1+x}-\sqrt{1-x}}{\sqrt{1+x}+\sqrt{1-x}}=\dfrac{\sqrt{2}\cos \theta -\sqrt{2}\sin \theta }{\sqrt{2}\cos \theta +\sqrt{2}\sin \theta }
Taking 2\sqrt{2} common, we get,
1+x1x1+x+1x=22[cosθsinθcosθ+sinθ]\Rightarrow \dfrac{\sqrt{1+x}-\sqrt{1-x}}{\sqrt{1+x}+\sqrt{1-x}}=\dfrac{\sqrt{2}}{\sqrt{2}}\left[ \dfrac{\cos \theta -\sin \theta }{\cos \theta +\sin \theta } \right]
Diving the numerator and denominator by cosθ,\cos \theta , we get,
1+x1x1+x+1x=22[cosθcosθsinθcosθcosθcosθ+sinθcosθ]\Rightarrow \dfrac{\sqrt{1+x}-\sqrt{1-x}}{\sqrt{1+x}+\sqrt{1-x}}=\dfrac{\sqrt{2}}{\sqrt{2}}\left[ \dfrac{\dfrac{\cos \theta }{\cos \theta }-\dfrac{\sin \theta }{\cos \theta }}{\dfrac{\cos \theta }{\cos \theta }+\dfrac{\sin \theta }{\cos \theta }} \right]
Now simplifying using sinθcosθ=tanθ,\dfrac{\sin \theta }{\cos \theta }=\tan \theta , we will get,
1+x1x1+x+1x=22[1tanθ1+tanθ]\Rightarrow \dfrac{\sqrt{1+x}-\sqrt{1-x}}{\sqrt{1+x}+\sqrt{1-x}}=\dfrac{\sqrt{2}}{\sqrt{2}}\left[ \dfrac{1-\tan \theta }{1+\tan \theta } \right]
As tanπ4=1,\tan \dfrac{\pi }{4}=1, we will get,
1+x1x1+x+1x=[tanπ4tanθ1+tanπ4.tanθ]\Rightarrow \dfrac{\sqrt{1+x}-\sqrt{1-x}}{\sqrt{1+x}+\sqrt{1-x}}=\left[ \dfrac{\tan \dfrac{\pi }{4}-\tan \theta }{1+\tan \dfrac{\pi }{4}.\tan \theta } \right]
Now, using tanAtanB1+tanAtanB=tan(AB),\dfrac{\tan A-\tan B}{1+\tan A\tan B}=\tan \left( A-B \right), we will get,
1+x1x1+x+1x=tan(π4θ)\Rightarrow \dfrac{\sqrt{1+x}-\sqrt{1-x}}{\sqrt{1+x}+\sqrt{1-x}}=\tan \left( \dfrac{\pi }{4}-\theta \right)
So, we will get for x=cos2θx=\cos 2\theta as
1+x1x1+x+1x=tan(π4θ)\dfrac{\sqrt{1+x}-\sqrt{1-x}}{\sqrt{1+x}+\sqrt{1-x}}=\tan \left( \dfrac{\pi }{4}-\theta \right)
Now, applying tan1{{\tan }^{-1}} on both the sides, we get,
tan1[1+x1x1+x+1x]=tan1[tan(π4θ)]\Rightarrow {{\tan }^{-1}}\left[ \dfrac{\sqrt{1+x}-\sqrt{1-x}}{\sqrt{1+x}+\sqrt{1-x}} \right]={{\tan }^{-1}}\left[ \tan \left( \dfrac{\pi }{4}-\theta \right) \right]
We know that, tan1(tanθ)=θ.{{\tan }^{-1}}\left( \tan \theta \right)=\theta . So, we will get,
tan1[1+x1x1+x+1x]=π4θ\Rightarrow {{\tan }^{-1}}\left[ \dfrac{\sqrt{1+x}-\sqrt{1-x}}{\sqrt{1+x}+\sqrt{1-x}} \right]=\dfrac{\pi }{4}-\theta
As, cos2θ=x\cos 2\theta =x
2θ=cos1x\Rightarrow 2\theta ={{\cos }^{-1}}x
θ=12cos1x\Rightarrow \theta =\dfrac{1}{2}{{\cos }^{-1}}x
Using this in the above value, we will get,
tan1[1+x1x1+x+1x]=π412cos1x\Rightarrow {{\tan }^{-1}}\left[ \dfrac{\sqrt{1+x}-\sqrt{1-x}}{\sqrt{1+x}+\sqrt{1-x}} \right]=\dfrac{\pi }{4}-\dfrac{1}{2}{{\cos }^{-1}}x

Note: We need to know certain formulas like 1+cos2θ=2cos2θ,cos2θ=cos2θsin2θ.1+\cos 2\theta =2{{\cos }^{2}}\theta ,\cos 2\theta ={{\cos }^{2}}\theta -{{\sin }^{2}}\theta . Since, sin2θ=1cos2θ,{{\sin }^{2}}\theta =1-{{\cos }^{2}}\theta , so cos2θ=cos2θ(1cos2θ).\cos 2\theta ={{\cos }^{2}}\theta -\left( 1-{{\cos }^{2}}\theta \right).
Simplifying further, we get,
cos2θ=cos2θ+cos2θ1\Rightarrow \cos 2\theta ={{\cos }^{2}}\theta +{{\cos }^{2}}\theta -1
1+cos2θ=2cos2θ\Rightarrow 1+\cos 2\theta =2{{\cos }^{2}}\theta