Question
Question: Prove that \[{{\tan }^{-1}}\left[ \dfrac{\sqrt{1+x}-\sqrt{1-x}}{\sqrt{1+x}+\sqrt{1-x}} \right]=\dfra...
Prove that tan−1[1+x+1−x1+x−1−x]=4π−21cos−1x,2−1≤x≤1.
Solution
To simplify tan−1[1+x+1−x1+x−1−x] we put x=cos2θ and then use 1+cos2θ=2cos2θ and 1−cos2θ=2sin2θ. We will simplify the given expression at last and we will compare all the terms using 1+tanAtanBtanA−tanB=tan(A−B). At last, we will shift again x=cos2θ to get the required solution.
Complete step by step answer:
We have tan−1[1+x+1−x1+x−1−x] and we have to show that the value is equal to 4π+21cos−1x. We will first simplify tan−1[1+x+1−x1+x−1−x] and then using the simplified term, we will solve further. We will start with the assumption that we have x=cos2θ, we will use this because 1+cos2θ=2cos2θ and 1−cos2θ=2sin2θ.
Now, we will put x=cos2θ in [1+x+1−x1+x−1−x]. We will get,
1+x+1−x1+x−1−x=1+cos2θ+1−cos2θ1+cos2θ−1−cos2θ
As, 1+cos2θ=2cos2θ and 1−cos2θ=2sin2θ, so we get,
⇒1+x+1−x1+x−1−x=2cos2θ+2sin2θ2cos2θ−2sin2θ
Simplifying, we get,
⇒1+x+1−x1+x−1−x=2cosθ+2sinθ2cosθ−2sinθ
Taking 2 common, we get,
⇒1+x+1−x1+x−1−x=22[cosθ+sinθcosθ−sinθ]
Diving the numerator and denominator by cosθ, we get,
⇒1+x+1−x1+x−1−x=22cosθcosθ+cosθsinθcosθcosθ−cosθsinθ
Now simplifying using cosθsinθ=tanθ, we will get,
⇒1+x+1−x1+x−1−x=22[1+tanθ1−tanθ]
As tan4π=1, we will get,
⇒1+x+1−x1+x−1−x=1+tan4π.tanθtan4π−tanθ
Now, using 1+tanAtanBtanA−tanB=tan(A−B), we will get,
⇒1+x+1−x1+x−1−x=tan(4π−θ)
So, we will get for x=cos2θ as
1+x+1−x1+x−1−x=tan(4π−θ)
Now, applying tan−1 on both the sides, we get,
⇒tan−1[1+x+1−x1+x−1−x]=tan−1[tan(4π−θ)]
We know that, tan−1(tanθ)=θ. So, we will get,
⇒tan−1[1+x+1−x1+x−1−x]=4π−θ
As, cos2θ=x
⇒2θ=cos−1x
⇒θ=21cos−1x
Using this in the above value, we will get,
⇒tan−1[1+x+1−x1+x−1−x]=4π−21cos−1x
Note: We need to know certain formulas like 1+cos2θ=2cos2θ,cos2θ=cos2θ−sin2θ. Since, sin2θ=1−cos2θ, so cos2θ=cos2θ−(1−cos2θ).
Simplifying further, we get,
⇒cos2θ=cos2θ+cos2θ−1
⇒1+cos2θ=2cos2θ