Question
Question: Prove that \[{\tan ^{ - 1}}\left[ {\dfrac{{\sqrt {1 + {x^2}} + \sqrt {1 - {x^2}} }}{{\sqrt {1 + {x^2...
Prove that tan−1[1+x2−1−x21+x2+1−x2]=4π+21cos−1(x2)
Solution
Hint : Use trigonometric substitution. Substitute x in such a way that 1+x2 becomes square of some term. Then it would come out of square root sign and you will be able to solve the question.
Complete step-by-step answer :
L.H.S =tan−1[1+x2−1−x21+x2+1−x2]
Put x2=cos2θ
⇒tan−1[1+x2−1−x21+x2+1−x2]=tan−1[1+cos2θ−1−cos2θ1+cos2θ+1−cos2θ] . . . (1)
We know that,
cos2θ=cos2θ−sin2θ
=cos2θ−(1−cos2θ)
=cos2θ−1+cos2θ
⇒cos2θ=2cos2θ−1
Substitute this value in equation (1). We get
tan−1[1+cos2θ−1−cos2θ1+cos2θ+1−cos2θ]=tan−1[1+2cos2θ−1−1−(2cos2θ−1)1+2cos2θ−1+1−(2cos2θ−1)]
By simplifying it, we get
=tan−1[2cos2θ−1−2cos2θ+12cos2θ+1−2cos2θ+1]
=tan−1[2cos2θ−2−2cos2θ2cos2θ+2−2cos2θ]
=tan−1[2cos2θ−2(1−cos2θ)2cos2θ+2(1−cos2θ)]
=tan−1[2cos2θ−2sin2θ2cos2θ+2sin2θ]
Dividing numerator and denominator by 2 inside tan−1, we get
tan−1[2cos2θ−2sin2θ2cos2θ+2sin2θ]=tan−1[cos2θ−sin2θcos2θ+sin2θ]
=tan−1[cosθ−sinθcosθ+sinθ]
Dividing numerator and denominator by cosθ inside tan−1, we get
tan−1[cosθ−sinθcosθ+sinθ]=tan−11−cosθsinθ1+cosθsinθ
=tan−1[1−tanθ1+tanθ]
=tan−1[1−1×tanθ1+tanθ] (∵1×tanθ=tanθ)
=tan−11−tan(4π)×tanθtan(4π)+tanθ (∵tan(4π)=1)
=tan−1(tan(4π+θ)) (∵tan(A+B)=1−tanAtanBtanA+tanB)
=4π+θ (∵tan−1(tanθ)=θ) . . . (2)
Now,
x2=cos2θ
⇒cos−1(x2)=2θ
By rearranging it, we get
2θ=cos−1(x2)
⇒θ=21cos−1(x2)
Substituting this value in equation (2), we get
4π+θ=4π+21cos−1(x2)
= R.H.S.
Hence, it is proved that
tan−1[1+x2−1−x21+x2+1−x2]=4π+21cos−1(x2)
Note : For the question to exist, 1−x2 should exist.
For 1−x2 to exist, 1−x2⩾0
Because, the square root of a negative term will not exist.
⇒1⩾x2
⇒x2⩽1 . . . (2)
But a square term is never negative.
⇒x2⩾0 . . . (3)
From equation (2) and (3), we get
0⩽x2⩽1
⇒0⩽cos2θ⩽1 (∵x2=cos2θ)
Therefore, we could substitute, x2=cos2θ