Solveeit Logo

Question

Question: Prove that \[{\tan ^{ - 1}}\left( {\dfrac{{\sqrt {1 + \cos x} + \sqrt {1 - \cos x} }}{{\sqrt {1 + \c...

Prove that tan1(1+cosx+1cosx1+cosx1cosx)=π4x2{\tan ^{ - 1}}\left( {\dfrac{{\sqrt {1 + \cos x} + \sqrt {1 - \cos x} }}{{\sqrt {1 + \cos x} - \sqrt {1 - \cos x} }}} \right) = \dfrac{\pi }{4} - \dfrac{x}{2} if π<x<3π2\pi < x < \dfrac{{3\pi }}{2}.

Explanation

Solution

Hint : We will first use the formulas 1+cos2a=2cos2a1 + \cos 2a = 2{\cos ^2}aand 1cos2a=2sin2a1 - \cos 2a = 2{\sin ^2}ato solve the terms inside the bracket. Then, we will have terms like x2\sqrt {{x^2}} which we know, x2=x\sqrt {{x^2}} = |x|. After substituting, we are given the range for xx, we will then find the range for x2\dfrac{x}{2}as we will consider x=2ax = 2a which will imply a=x2a = \dfrac{x}{2}. After finding the range for x2\dfrac{x}{2}, we will check whether the term in the bracket is positive or negative in that range and then we will consider the signs. If the term is negative then the modulus of that term will have negative sign and if the term is positive then the modulus of that term will have positive sign. After that, we will divide numerator and denominator of the terms in bracket by cosx2\cos \dfrac{x}{2}and then use the formulas tan(π4±A)=1±tanA1tanA\tan \left( {\dfrac{\pi }{4} \pm A} \right) = \dfrac{{1 \pm \tan A}}{{1 \mp \tan A}}. At last, we know, tan1(tanθ)=θ{\tan ^{ - 1}}(\tan \theta ) = \theta if π2<θ<π2 - \dfrac{\pi }{2} < \theta < \dfrac{\pi }{2}. We will then consider the range for the angle we will get and solve accordingly.

Complete step by step solution:
We have to prove tan1(1+cosx+1cosx1+cosx1cosx)=π4x2{\tan ^{ - 1}}\left( {\dfrac{{\sqrt {1 + \cos x} + \sqrt {1 - \cos x} }}{{\sqrt {1 + \cos x} - \sqrt {1 - \cos x} }}} \right) = \dfrac{\pi }{4} - \dfrac{x}{2} if π<x<3π2\pi < x < \dfrac{{3\pi }}{2}. ----(1)
Considering Left Hand Side,
tan1(1+cosx+1cosx1+cosx1cosx){\tan ^{ - 1}}\left( {\dfrac{{\sqrt {1 + \cos x} + \sqrt {1 - \cos x} }}{{\sqrt {1 + \cos x} - \sqrt {1 - \cos x} }}} \right)
Taking 2a=x2a = x, we have a=x2a = \dfrac{x}{2}
Now, Using the formulas 1+cos2a=2cos2a1 + \cos 2a = 2{\cos ^2}a and 1cos2a=2sin2a1 - \cos 2a = 2{\sin ^2}a inside the brackets, Left Hand Side becomes
tan1(2cos2x2+2sin2x22cos2x22sin2x2){\tan ^{ - 1}}\left( {\dfrac{{\sqrt {2{{\cos }^2}\dfrac{x}{2}} + \sqrt {2{{\sin }^2}\dfrac{x}{2}} }}{{\sqrt {2{{\cos }^2}\dfrac{x}{2}} - \sqrt {2{{\sin }^2}\dfrac{x}{2}} }}} \right)
As we knowxy=xy\sqrt {xy} = \sqrt x \sqrt y , Left Hand Side becomes
=tan1(2×cos2x2+2×sin2x22×cos2x22×sin2x2)= {\tan ^{ - 1}}\left( {\dfrac{{\sqrt 2 \times \sqrt {{{\cos }^2}\dfrac{x}{2}} + \sqrt 2 \times \sqrt {{{\sin }^2}\dfrac{x}{2}} }}{{\sqrt 2 \times \sqrt {{{\cos }^2}\dfrac{x}{2}} - \sqrt 2 \times \sqrt {{{\sin }^2}\dfrac{x}{2}} }}} \right)
Now, using x2=x\sqrt {{x^2}} = |x| in the above expression
=tan1(2×cosx2+2×sinx22×cosx22×sinx2)= {\tan ^{ - 1}}\left( {\dfrac{{\sqrt 2 \times |\cos \dfrac{x}{2}| + \sqrt 2 \times |\sin \dfrac{x}{2}|}}{{\sqrt 2 \times |\cos \dfrac{x}{2}| - \sqrt 2 \times |\sin \dfrac{x}{2}|}}} \right)
Using Distributive Property i.e. a(b±c)=ab±aca(b \pm c) = ab \pm ac
=tan1(2(cosx2+sinx2)2(cosx2sinx2))= {\tan ^{ - 1}}\left( {\dfrac{{\sqrt 2 (|\cos \dfrac{x}{2}| + |\sin \dfrac{x}{2}|)}}{{\sqrt 2 (|\cos \dfrac{x}{2}| - |\sin \dfrac{x}{2}|)}}} \right)
Dividing Numerator and denominator inside the bracket by 2\sqrt 2
=tan1(2(cosx2+sinx2)22(cosx2sinx2)2)= {\tan ^{ - 1}}\left( {\dfrac{{\dfrac{{\sqrt 2 (|\cos \dfrac{x}{2}| + |\sin \dfrac{x}{2}|)}}{{\sqrt 2 }}}}{{\dfrac{{\sqrt 2 (|\cos \dfrac{x}{2}| - |\sin \dfrac{x}{2}|)}}{{\sqrt 2 }}}}} \right)
As 22=1\dfrac{{\sqrt 2 }}{{\sqrt 2 }} = 1, we will be left with
=tan1(cosx2+sinx2cosx2sinx2)= {\tan ^{ - 1}}\left( {\dfrac{{|\cos \dfrac{x}{2}| + |\sin \dfrac{x}{2}|}}{{|\cos \dfrac{x}{2}| - |\sin \dfrac{x}{2}|}}} \right) -----(2)
Now, we are given π<x<3π2\pi < x < \dfrac{{3\pi }}{2}, i.e. xxlies in third quadrant
Now, dividing by 22, π2<x2<12×3π2\dfrac{\pi }{2} < \dfrac{x}{2} < \dfrac{1}{2} \times \dfrac{{3\pi }}{2}
π2<x2<3π4\dfrac{\pi }{2} < \dfrac{x}{2} < \dfrac{{3\pi }}{4}, i.e. x2\dfrac{x}{2} lies in Second Quadrant.
We know, sinx\sin xis positive if xxlies in the second quadrant and cosx\cos xis negative if xxlies in the Second Quadrant.
Now, since x2\dfrac{x}{2}lies in second quadrant,
So, sinx2=sinx2|\sin \dfrac{x}{2}| = \sin \dfrac{x}{2} and cosx2=cosx2|\cos \dfrac{x}{2}| = - \cos \dfrac{x}{2} ----(3)
Using (3) in (2), we get Left Hand Side
=tan1(cosx2+sinx2cosx2sinx2)= {\tan ^{ - 1}}\left( {\dfrac{{ - \cos \dfrac{x}{2} + \sin \dfrac{x}{2}}}{{ - \cos \dfrac{x}{2} - \sin \dfrac{x}{2}}}} \right)
Now, Dividing the numerator and denominator inside the bracket by cosx2\cos \dfrac{x}{2}
=tan1(cosx2+sinx2cosx2cosx2sinx2cosx2)= {\tan ^{ - 1}}\left( {\dfrac{{\dfrac{{ - \cos \dfrac{x}{2} + \sin \dfrac{x}{2}}}{{\cos \dfrac{x}{2}}}}}{{\dfrac{{ - \cos \dfrac{x}{2} - \sin \dfrac{x}{2}}}{{\cos \dfrac{x}{2}}}}}} \right)
Now, we will split the denominators of both the numerator and denominator.
=tan1(cosx2cosx2+sinx2cosx2cosx2cosx2sinx2cosx2)= {\tan ^{ - 1}}\left( {\dfrac{{ - \dfrac{{\cos \dfrac{x}{2}}}{{\cos \dfrac{x}{2}}} + \dfrac{{\sin \dfrac{x}{2}}}{{\cos \dfrac{x}{2}}}}}{{ - \dfrac{{\cos \dfrac{x}{2}}}{{\cos \dfrac{x}{2}}} - \dfrac{{\sin \dfrac{x}{2}}}{{\cos \dfrac{x}{2}}}}}} \right)
We very well know, (sinxcosx=tanx)\left( {\dfrac{{\sin x}}{{\cos x}} = \tan x} \right). So, using this we get
=tan1(1+tanx21tanx2)= {\tan ^{ - 1}}\left( {\dfrac{{ - 1 + \tan \dfrac{x}{2}}}{{ - 1 - \tan \dfrac{x}{2}}}} \right)
Now, Taking negative sign common from the numerator as well as the denominator
=tan1((1tanx2)(1+tanx2))= {\tan ^{ - 1}}\left( {\dfrac{{ - \left( {1 - \tan \dfrac{x}{2}} \right)}}{{ - \left( {1 + \tan \dfrac{x}{2}} \right)}}} \right)
Cancelling the negative sign from numerator and denominator, we are left with
=tan1((1tanx2)(1+tanx2))= {\tan ^{ - 1}}\left( {\dfrac{{\left( {1 - \tan \dfrac{x}{2}} \right)}}{{\left( {1 + \tan \dfrac{x}{2}} \right)}}} \right)
We know, (tan(π4±A)=1±tanA1tanA)\left( {\tan \left( {\dfrac{\pi }{4} \pm A} \right) = \dfrac{{1 \pm \tan A}}{{1 \mp \tan A}}} \right). So, now using this identity , we have
=tan1(tan(π4x2))= {\tan ^{ - 1}}\left( {\tan \left( {\dfrac{\pi }{4} - \dfrac{x}{2}} \right)} \right)
We are given, π<x<3π2\pi < x < \dfrac{{3\pi }}{2}
Now, dividing by 22, we get π2<x2<12×3π2π2<x2<3π4\dfrac{\pi }{2} < \dfrac{x}{2} < \dfrac{1}{2} \times \dfrac{{3\pi }}{2} \Rightarrow \dfrac{\pi }{2} < \dfrac{x}{2} < \dfrac{{3\pi }}{4}
Multiplying with (1)( - 1), we get π2>x2>3π43π4<\-x2<\-π2 - \dfrac{\pi }{2} > - \dfrac{x}{2} > - \dfrac{{3\pi }}{4} \Rightarrow - \dfrac{{3\pi }}{4} < \- \dfrac{x}{2} < \- \dfrac{\pi }{2}
(Signs get changed when multiplied with (1)( - 1) )
Adding π4\dfrac{\pi }{4}, we get π43π4<π4x2<π4π2\dfrac{\pi }{4} - \dfrac{{3\pi }}{4} < \dfrac{\pi }{4} - \dfrac{x}{2} < \dfrac{\pi }{4} - \dfrac{\pi }{2}
Taking LCM on the left and the right side.
π3π4<π4x2<π2π4\Rightarrow \dfrac{{\pi - 3\pi }}{4} < \dfrac{\pi }{4} - \dfrac{x}{2} < \dfrac{{\pi - 2\pi }}{4}
2π4<π4x2<\-π4\Rightarrow - \dfrac{{2\pi }}{4} < \dfrac{\pi }{4} - \dfrac{x}{2} < \- \dfrac{\pi }{4}
Dividing the numerator and denominator by 22 on the left side and Comparing the terms on the right side.
π2<π4x2<\-π4<π2\Rightarrow - \dfrac{\pi }{2} < \dfrac{\pi }{4} - \dfrac{x}{2} < \- \dfrac{\pi }{4} < \dfrac{\pi }{2}
π2<π4x2<π2\Rightarrow - \dfrac{\pi }{2} < \dfrac{\pi }{4} - \dfrac{x}{2} < \dfrac{\pi }{2} ----(4)
We know, tan1(tanθ)=θ{\tan ^{ - 1}}(\tan \theta ) = \theta if π2<θ<π2 - \dfrac{\pi }{2} < \theta < \dfrac{\pi }{2}.
From (4), we have π2<π4x2<π2 - \dfrac{\pi }{2} < \dfrac{\pi }{4} - \dfrac{x}{2} < \dfrac{\pi }{2}
So, tan1(tan(π4x2))=π4x2{\tan ^{ - 1}}\left( {\tan \left( {\dfrac{\pi }{4} - \dfrac{x}{2}} \right)} \right) = \dfrac{\pi }{4} - \dfrac{x}{2}
Hence, Proved.

Note : We usually ignore the conditions on xx given in the question and solve without considering the conditions. Also, when we use tan1(tanθ)=θ{\tan ^{ - 1}}(\tan \theta ) = \theta , we ignore the conditions on θ\theta . We have to remember which functions are positive or negative in which quadrant. And while we are changing the ranges for different angles when we are given a range for a particular angle, we usually forget to change the greater than or less than sign when we multiply with some negative number. Also, all the trigonometric identities are to be remembered thoroughly.