Solveeit Logo

Question

Question: Prove that \[{{\tan }^{-1}}\left( \dfrac{3}{4} \right)+{{\tan }^{-1}}\left( \dfrac{3}{5} \right)-{{\...

Prove that tan1(34)+tan1(35)tan1(819)=π4{{\tan }^{-1}}\left( \dfrac{3}{4} \right)+{{\tan }^{-1}}\left( \dfrac{3}{5} \right)-{{\tan }^{-1}}\left( \dfrac{8}{19} \right)=\dfrac{\pi }{4}

Explanation

Solution

First expand the given expression in left hand side using the formula for expansion of tan1x+tan1y{{\tan }^{-1}}x+{{\tan }^{-1}}y and tan1xtan1y{{\tan }^{-1}}x-{{\tan }^{-1}}y now substitute the values of x , y according to given expression and do the basic mathematical operations like addition and multiplication to get the required expression in the right hand side.

Complete step by step answer:
Now considering the L.H.S
L.H.S = tan1(34)+tan1(35)tan1(819){{\tan }^{-1}}\left( \dfrac{3}{4} \right)+{{\tan }^{-1}}\left( \dfrac{3}{5} \right)-{{\tan }^{-1}}\left( \dfrac{8}{19} \right)
The first two terms are in the form of tan1x+tan1y{{\tan }^{-1}}x+{{\tan }^{-1}}y
We know that
tan1x+tan1y=tan1(x+y1xy){{\tan }^{-1}}x+{{\tan }^{-1}}y={{\tan }^{-1}}\left( \dfrac{x+y}{1-xy} \right) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1)
Substituting x=34x=\dfrac{3}{4}, y=35y=\dfrac{3}{5}
=tan1(34+351(34)(35))tan1(819)={{\tan }^{-1}}\left( \dfrac{\dfrac{3}{4}+\dfrac{3}{5}}{1-\left( \dfrac{3}{4} \right)\left( \dfrac{3}{5} \right)} \right)-{{\tan }^{-1}}\left( \dfrac{8}{19} \right)
=tan1(15+122020920)tan1(819)={{\tan }^{-1}}\left( \dfrac{\dfrac{15+12}{20}}{\dfrac{20-9}{20}} \right)-{{\tan }^{-1}}\left( \dfrac{8}{19} \right)
=tan1(27201120)tan1(819)={{\tan }^{-1}}\left( \dfrac{\dfrac{27}{20}}{\dfrac{11}{20}} \right)-{{\tan }^{-1}}\left( \dfrac{8}{19} \right)
=tan1(2711)tan1(819)={{\tan }^{-1}}\left( \dfrac{27}{11} \right)-{{\tan }^{-1}}\left( \dfrac{8}{19} \right) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (a)
The above expression (a) is in the form tan1xtan1y{{\tan }^{-1}}x-{{\tan }^{-1}}y
We know that tan1xtan1y=tan1(xy1+xy){{\tan }^{-1}}x-{{\tan }^{-1}}y={{\tan }^{-1}}\left( \dfrac{x-y}{1+xy} \right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2)
Substituting the values of x and y in (2) we get,
=tan1((2711)(819)1+(2711)(819))={{\tan }^{-1}}\left( \dfrac{\left( \dfrac{27}{11} \right)-\left( \dfrac{8}{19} \right)}{1+\left( \dfrac{27}{11} \right)\left( \dfrac{8}{19} \right)} \right)
=tan1(51388209209+21620)={{\tan }^{-1}}\left( \dfrac{\dfrac{513-88}{209}}{\dfrac{209+216}{20}} \right)
=tan1(425209425209)={{\tan }^{-1}}\left( \dfrac{\dfrac{425}{209}}{\dfrac{425}{209}} \right)
=tan1(1)={{\tan }^{-1}}\left( 1 \right)
= R.H.S

Note: Usage of the formulas (tan1x+tan1y)\left( {{\tan }^{-1}}x+{{\tan }^{-1}}y \right) and (tan1xtan1y)\left( {{\tan }^{-1}}x-{{\tan }^{-1}}y \right) should be done carefully to simplify the given question and application of the formulas in correct way is necessary.