Question
Question: Prove that \[{{\tan }^{-1}}\left( \dfrac{3}{4} \right)+{{\tan }^{-1}}\left( \dfrac{3}{5} \right)-{{\...
Prove that tan−1(43)+tan−1(53)−tan−1(198)=4π
Solution
First expand the given expression in left hand side using the formula for expansion of tan−1x+tan−1y and tan−1x−tan−1y now substitute the values of x , y according to given expression and do the basic mathematical operations like addition and multiplication to get the required expression in the right hand side.
Complete step by step answer:
Now considering the L.H.S
L.H.S = tan−1(43)+tan−1(53)−tan−1(198)
The first two terms are in the form of tan−1x+tan−1y
We know that
tan−1x+tan−1y=tan−1(1−xyx+y) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1)
Substituting x=43, y=53
=tan−11−(43)(53)43+53−tan−1(198)
=tan−12020−92015+12−tan−1(198)
=tan−120112027−tan−1(198)
=tan−1(1127)−tan−1(198) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (a)
The above expression (a) is in the form tan−1x−tan−1y
We know that tan−1x−tan−1y=tan−1(1+xyx−y). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2)
Substituting the values of x and y in (2) we get,
=tan−11+(1127)(198)(1127)−(198)
=tan−120209+216209513−88
=tan−1209425209425
=tan−1(1)
= R.H.S
Note: Usage of the formulas (tan−1x+tan−1y) and (tan−1x−tan−1y) should be done carefully to simplify the given question and application of the formulas in correct way is necessary.