Question
Question: Prove that \[{{\tan }^{-1}}\left( \dfrac{1}{4} \right)+{{\tan }^{-1}}\left( \dfrac{2}{9} \right)=\df...
Prove that tan−1(41)+tan−1(92)=21tan−1(34)
Solution
Hint: First expand the given expression in the left hand side using the formula for expansion of tan−1x+tan−1y. Now expand the obtained equation using the formula 2tan−1x=tan−1(1−x22x)the we will get the required expression in the right hand side.
Complete step-by-step answer:
Now take left hand side that is tan−1(41)+tan−1(92)
We know that the formula for tan−1x+tan−1yis given by tan−1x+tan−1y=tan−1(1−xyx+y)
Now by applying the above formula we will get,
=tan−11−(41)(92)(41)+(92). . . . . . . . . . . . . . . . . . . . . . . . . (1)
=tan−13636−2369+8
=tan−1(3417)
=tan−1(21). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2)
Multiplying and dividing with two to the above expression we will get
=21(2tan−1(21)). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3)
=21tan−11−412×21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (4)
=21tan−1431
=21(tan−1(34))
Hence prove that left hand side = right hand side
Hence proved that tan−1(41)+tan−1(92)=21tan−1(34)
Note: If xy<1,tan−1x+tan−1y=tan−1(1−xyx+y)and if xy>1,tan−1x+tan−1y=π+tan−1(1−xyx+y). Important step that we have to remember here is that we have to multiply and divide the obtained LHS expression to get it similar to RHS .