Question
Question: Prove that \[{{\tan }^{-1}}\left( \dfrac{1}{3} \right)+{{\tan }^{-1}}\left( \dfrac{1}{5} \right)+{{\...
Prove that tan−1(31)+tan−1(51)+tan−1(71)+tan−1(81)=4π
Solution
Hint: First expand the given expression in left hand side using the formula for expansion of tan−1x+tan−1ynow substitute the values of x , y according to given expression and do the basic mathematical operations like addition and multiplication to get the required expression in the right hand side.
Complete step-by-step answer:
Now considering L.H.S
tan−1(31)+tan−1(51)+tan−1(71)+tan−1(81)
As we can see we have to use tan−1x+tan−1y
Using the formula,
tan−1x+tan−1y=tan−1(1−xyx+y). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1)
Substituting x=31and y=51
Substituting x=71and y=81
=tan−11−(31)(51)31+51+tan−11−(71)(81)71+81
=tan−11514155+3+tan−15655568+7
=tan−1(148)+tan−1(5515). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2)
Further solving (2) we get (3)
=tan−1(148)+tan−1(113) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3)
=tan−11−(148)(113)148+113
=tan−1154130154130
=tan−1(1)
=4π
= R.H.S
Note: If xy<1,tan−1x+tan−1y=tan−1(1−xyx+y)and if xy>1,tan−1x+tan−1y=π+tan−1(1−xyx+y), therefore it is always important to check the multiplication of x and y for every step , though here we did not do it because we could in the starting only that from initial only both x and y are less than 1 so their multiplication will always be less than 1.