Solveeit Logo

Question

Question: Prove that \({{\tan }^{-1}}\dfrac{3}{4}+{{\tan }^{-1}}\dfrac{3}{5}-{{\tan }^{-1}}\dfrac{8}{19}=\dfra...

Prove that tan134+tan135tan1819=π4{{\tan }^{-1}}\dfrac{3}{4}+{{\tan }^{-1}}\dfrac{3}{5}-{{\tan }^{-1}}\dfrac{8}{19}=\dfrac{\pi }{4} .

Explanation

Solution

To solve this question first we consider the L.H.S. of the given expression which is tan134+tan135tan1819{{\tan }^{-1}}\dfrac{3}{4}+{{\tan }^{-1}}\dfrac{3}{5}-{{\tan }^{-1}}\dfrac{8}{19}. Now, we find the value of L.H.S. by using the formula of inverse trigonometric functions tan1x+tan1y=tan1x+y1xy, if xy1{{\tan }^{-1}}x+{{\tan }^{-1}}y={{\tan }^{-1}}\dfrac{x+y}{1-xy},\text{ if xy1}. Now, we compare the obtained value of L.H.S. with R.H.S. to prove that both are equal.

Complete step-by-step answer :
We have to prove that tan134+tan135tan1819=π4{{\tan }^{-1}}\dfrac{3}{4}+{{\tan }^{-1}}\dfrac{3}{5}-{{\tan }^{-1}}\dfrac{8}{19}=\dfrac{\pi }{4}
We have been given an expression of inverse trigonometric function tan134+tan135tan1819=π4{{\tan }^{-1}}\dfrac{3}{4}+{{\tan }^{-1}}\dfrac{3}{5}-{{\tan }^{-1}}\dfrac{8}{19}=\dfrac{\pi }{4}.
Now, first we will calculate the value of the expression given in the question.
Now, first let us consider the L.H.S. = tan134+tan135tan1819{{\tan }^{-1}}\dfrac{3}{4}+{{\tan }^{-1}}\dfrac{3}{5}-{{\tan }^{-1}}\dfrac{8}{19}
Now, we know that tan1x+tan1y=tan1x+y1xy, if xy1{{\tan }^{-1}}x+{{\tan }^{-1}}y={{\tan }^{-1}}\dfrac{x+y}{1-xy},\text{ if xy1}
Let us apply the formula on first two terms of the above equation we have
(tan134+tan135)tan1819 tan134+35134×35tan1819 \begin{aligned} & \left( {{\tan }^{-1}}\dfrac{3}{4}+{{\tan }^{-1}}\dfrac{3}{5} \right)-{{\tan }^{-1}}\dfrac{8}{19} \\\ & \Rightarrow {{\tan }^{-1}}\dfrac{\dfrac{3}{4}+\dfrac{3}{5}}{1-\dfrac{3}{4}\times \dfrac{3}{5}}-{{\tan }^{-1}}\dfrac{8}{19} \\\ \end{aligned}
Now, taking LCM and solving further we get
tan13×5+3×44×51920tan1819\Rightarrow {{\tan }^{-1}}\dfrac{\dfrac{3\times 5+3\times 4}{4\times 5}}{1-\dfrac{9}{20}}-{{\tan }^{-1}}\dfrac{8}{19}
Now, simplifying further we get
tan115+122020920tan1819 tan127201120tan1819 \begin{aligned} & \Rightarrow {{\tan }^{-1}}\dfrac{\dfrac{15+12}{20}}{\dfrac{20-9}{20}}-{{\tan }^{-1}}\dfrac{8}{19} \\\ & \Rightarrow {{\tan }^{-1}}\dfrac{\dfrac{27}{20}}{\dfrac{11}{20}}-{{\tan }^{-1}}\dfrac{8}{19} \\\ \end{aligned}
Or we can write that
tan12720×2011tan1819 tan12711tan1819 \begin{aligned} & \Rightarrow {{\tan }^{-1}}\dfrac{27}{20}\times \dfrac{20}{11}-{{\tan }^{-1}}\dfrac{8}{19} \\\ & \Rightarrow {{\tan }^{-1}}\dfrac{27}{11}-{{\tan }^{-1}}\dfrac{8}{19} \\\ \end{aligned}
Now, we know that tan1xtan1y=tan1xy1+xy, if xy-1{{\tan }^{-1}}x-{{\tan }^{-1}}y={{\tan }^{-1}}\dfrac{x-y}{1+xy},\text{ if xy-1}
Now, applying the formula on the above equation we have
tan127118191+2711×819{{\tan }^{-1}}\dfrac{\dfrac{27}{11}-\dfrac{8}{19}}{1+\dfrac{27}{11}\times \dfrac{8}{19}}
Now, taking LCM and solving further we get
tan127×198×1111×191+216209\Rightarrow {{\tan }^{-1}}\dfrac{\dfrac{27\times 19-8\times 11}{11\times 19}}{1+\dfrac{216}{209}}
Now, simplifying further we get
tan151388209209+216209 tan1425209425209 \begin{aligned} & \Rightarrow {{\tan }^{-1}}\dfrac{\dfrac{513-88}{209}}{\dfrac{209+216}{209}} \\\ & \Rightarrow {{\tan }^{-1}}\dfrac{\dfrac{425}{209}}{\dfrac{425}{209}} \\\ \end{aligned}
Or we can write that
tan1425209×209425\Rightarrow {{\tan }^{-1}}\dfrac{425}{209}\times \dfrac{209}{425}
So, we have tan11\Rightarrow {{\tan }^{-1}}1
Now, we know that tan11=π4{{\tan }^{-1}}1=\dfrac{\pi }{4} , which is equal to R.H.S.
L.H.S.=R.H.S.
Hence proved

Note : The inverse functions in the trigonometry are used to get the angle with any of the trigonometry ratio. Inverse trigonometric functions do the opposite of the regular trigonometric functions. We can also write tan11{{\tan }^{-1}}1 as tan11=A{{\tan }^{-1}}1=A , so we have tanA=1\tan A=1 and we know that tangent function gives the value 11 when angle is equal to π4\dfrac{\pi }{4} .
So, we have tanπ4=1\tan \dfrac{\pi }{4}=1
Or we can write the above equation astan11=π4{{\tan }^{-1}}1=\dfrac{\pi }{4} .