Question
Question: Prove that $$ \sum_{r=0}^{n} (-1)^r \ ^nC_r \left[ \frac{1}{2^r} + \frac{3^r}{2^{2r}} + \frac{7^r}{2...
Prove that
= \frac{2^{mn}-1}{2^{mn}(2^n-1)}. $$
Answer
The identity is proven.
Explanation
Solution
Let the given expression be E. The terms inside the bracket are (1−2k1)r for k=1,2,…,m. E=∑r=0n(−1)r nCr[∑k=1m(1−2k1)r] Swapping the order of summation: E=∑k=1m[∑r=0n(−1)r nCr(1−2k1)r] The inner sum is ∑r=0n nCr(−(1−2k1))r=(1−(1−2k1))n=(2k1)n=2kn1. The outer sum becomes a geometric series: E=∑k=1m2kn1=2n1⋅1−2n11−(2n1)m=2n1⋅1−2n11−2mn1=2mn(2n−1)2mn−1
