Solveeit Logo

Question

Question: Prove that \(\sum\limits_{k=0}^{n}{{{\left( -1 \right)}^{k}}\left( \begin{matrix} n \\\ k ...

Prove that k=0n(1)k(n k )1k+m+1=k=0m(1)k(m k )1k+n+1\sum\limits_{k=0}^{n}{{{\left( -1 \right)}^{k}}\left( \begin{matrix} n \\\ k \\\ \end{matrix} \right)}\dfrac{1}{k+m+1}=\sum\limits_{k=0}^{m}{{{\left( -1 \right)}^{k}}\left( \begin{matrix} m \\\ k \\\ \end{matrix} \right)\dfrac{1}{k+n+1}}

Explanation

Solution

Hint: Write expression of (1x)n&(1x)m{{\left( 1-x \right)}^{n}}\And {{\left( 1-x \right)}^{m}} and then apply integral to both sides.

Here, we have to prove
k=0n(1)knCk1k+m+1=k=0m(1)kmCk1k+n+1.........(1)\sum\limits_{k=0}^{n}{{{\left( -1 \right)}^{k}}{}^{n}{{C}_{k}}}\dfrac{1}{k+m+1}=\sum\limits_{k=0}^{m}{{{\left( -1 \right)}^{k}}{}^{m}{{C}_{k}}\dfrac{1}{k+n+1}}.........\left( 1 \right)
Now, we cannot concert LHS to RHS directly, so basically we need to simplify LHS and RHS both for proving.
Let us simplifying LHS part:
LHS=k=0n(1)knck1(k+m+1)LHS=\sum\limits_{k=0}^{n}{{{\left( -1 \right)}^{k}}{}^{n}{{c}_{k}}\dfrac{1}{\left( k+m+1 \right)}}
Writing the above summation to series as
k=0n(1)knck1(k+m+1)=nc0(m+1)nc1(m+2)+nc2(m+3)+.......(1)nncnm+n+1........(2)\sum\limits_{k=0}^{n}{{{\left( -1 \right)}^{k}}{}^{n}{{c}_{k}}\dfrac{1}{\left( k+m+1 \right)}=\dfrac{{}^{n}{{c}_{0}}}{\left( m+1 \right)}-\dfrac{{}^{n}{{c}_{1}}}{\left( m+2 \right)}+\dfrac{{}^{n}{{c}_{2}}}{\left( m+3 \right)}}+.......{{\left( -1 \right)}^{n}}\dfrac{{}^{n}{{c}_{n}}}{m+n+1}........\left( 2 \right)
Now we can observe that nc0,nc1,nc2.......ncn1,ncn{}^{n}{{c}_{0}},{}^{n}{{c}_{1}},{}^{n}{{c}_{2}}.......{}^{n}{{c}_{n-1}},{}^{n}{{c}_{n}} are coefficient of x0,x1,x2.......xn1,xn in (1+x)n{{x}^{0}},{{x}^{1}},{{x}^{2}}.......{{x}^{n-1}},{{x}^{n}}\text{ in }{{\left( 1+x \right)}^{n}} as expansion of it can be written as;
(1+x)n=nc0+nc1x+nc2x2+.....ncnxn{{\left( 1+x \right)}^{n}}={}^{n}{{c}_{0}}+{}^{n}{{c}_{1}}x+{}^{n}{{c}_{2}}{{x}^{2}}+.....{}^{n}{{c}_{n}}{{x}^{n}}
As, series of equation (2)\left( 2 \right) has alternative positive and negative signs, means we need to relate the series by expansion of (1x)n{{\left( 1-x \right)}^{n}} which can be written as
(1x)n=nc0nc1x+nc2x2nc3x3+.........+(1)nncnxn{{\left( 1-x \right)}^{n}}={}^{n}{{c}_{0}}-{}^{n}{{c}_{1}}x+{}^{n}{{c}_{2}}{{x}^{2}}-{}^{n}{{c}_{3}}{{x}^{3}}+.........+{{\left( -1 \right)}^{n}}{}^{n}{{c}_{n}}{{x}^{n}}
Let us multiply by xm{{x}^{m}} to both sides of the above series
(1x)nxm=nc0xmnc1xm+1+nc2xm+2+......(1)nncnxn+m{{\left( 1-x \right)}^{n}}{{x}^{m}}={}^{n}{{c}_{0}}{{x}^{m}}-{}^{n}{{c}_{1}}{{x}^{m+1}}+{}^{n}{{c}_{2}}{{x}^{m+2}}+......{{\left( -1 \right)}^{n}}{}^{n}{{c}_{n}}{{x}^{n+m}}
We have xn=xn+1n+1\int{{{x}^{n}}=\dfrac{{{x}^{n+1}}}{n+1}}
Let us integrate the above series from 0 to 10\text{ to 1} we get;
01(1x)nxmdx=01nc0xmdx01nc1xm+1dx+01nc2xm+2dx+.......(1)n01ncnxm+ndx 01(1x)nxmdx=nc0xm+1m+11 0 nc1xm+2m+21 0 +nc2xm+3m+31 0 +.......(1)nncnxm+n+1m+n+11 0  \begin{aligned} & \int_{0}^{1}{{{\left( 1-x \right)}^{n}}{{x}^{m}}dx}=\int_{0}^{1}{{}^{n}{{c}_{0}}{{x}^{m}}dx}-\int_{0}^{1}{{}^{n}{{c}_{1}}{{x}^{m+1}}dx}+\int_{0}^{1}{{}^{n}{{c}_{2}}{{x}^{m+2}}dx}+.......{{\left( -1 \right)}^{n}}\int_{0}^{1}{{}^{n}{{c}_{n}}{{x}^{m+n}}dx} \\\ & \int_{0}^{1}{{{\left( 1-x \right)}^{n}}{{x}^{m}}dx}={}^{n}{{c}_{0}}\dfrac{{{x}^{m+1}}}{m+1}\left| \begin{matrix} 1 \\\ 0 \\\ \end{matrix} \right.-{}^{n}{{c}_{1}}\dfrac{{{x}^{m+2}}}{m+2}\left| \begin{matrix} 1 \\\ 0 \\\ \end{matrix} \right.+{}^{n}{{c}_{2}}\dfrac{{{x}^{m+3}}}{m+3}\left| \begin{matrix} 1 \\\ 0 \\\ \end{matrix} \right.+.......{{\left( -1 \right)}^{n}}{}^{n}{{c}_{n}}\dfrac{{{x}^{m+n+1}}}{m+n+1}\left| \begin{matrix} 1 \\\ 0 \\\ \end{matrix} \right. \\\ \end{aligned}
Applying the limits, we get;
01(1x)nxmdx=nc0m+1nc1m+2+nc2m+3+........(1)nncnm+n+1\int_{0}^{1}{{{\left( 1-x \right)}^{n}}{{x}^{m}}dx}=\dfrac{{}^{n}{{c}_{0}}}{m+1}-\dfrac{{}^{n}{{c}_{1}}}{m+2}+\dfrac{{}^{n}{{c}_{2}}}{m+3}+........{{\left( -1 \right)}^{n}}\dfrac{{}^{n}{{c}_{n}}}{m+n+1}
Hence, LHS part can be written as;
k=0n(1)knck1k+m+1=01(1x)nxmdx........(3)\sum\limits_{k=0}^{n}{{{\left( -1 \right)}^{k}}{}^{n}{{c}_{k}}\dfrac{1}{k+m+1}=\int_{0}^{1}{{{\left( 1-x \right)}^{n}}{{x}^{m}}dx........\left( 3 \right)}}
Now, let us simplify the RHS part in a similar way. Here we have to take expansion of (1x)m{{\left( 1-x \right)}^{m}} as given summation can be expressed as:
k=0m(1)kmck(k+n+1)=mc0n+1mc1n+2+mc2n+3.........(1)m1mCm1n+m+(1)mmcmn+m+1\sum\limits_{k=0}^{m}{{{\left( -1 \right)}^{k}}\dfrac{{}^{m}{{c}_{k}}}{\left( k+n+1 \right)}=\dfrac{{}^{m}{{c}_{0}}}{n+1}-\dfrac{{}^{m}{{c}_{1}}}{n+2}+\dfrac{{}^{m}{{c}_{2}}}{n+3}.........{{\left( -1 \right)}^{m-1}}\dfrac{{}^{m}{{C}_{m-1}}}{n+m}+{{\left( -1 \right)}^{m}}\dfrac{{}^{m}{{c}_{m}}}{n+m+1}}
mc0,mc1,mc2,mc3...........{}^{m}{{c}_{0}},-{}^{m}{{c}_{1}},{}^{m}{{c}_{2}},-{}^{m}{{c}_{3}}........... are the coefficients of (1x)m{{\left( 1-x \right)}^{m}} . Expansion of (1x)m{{\left( 1-x \right)}^{m}}can be written as;
(1x)m=mc0mc1x+mc2x2mc3x3+........(1)m1mcm1xm1+(1)mmcmxm{{\left( 1-x \right)}^{m}}={}^{m}{{c}_{0}}-{}^{m}{{c}_{1}}x+{}^{m}{{c}_{2}}{{x}^{2}}-{}^{m}{{c}_{3}}{{x}^{3}}+........{{\left( -1 \right)}^{m-1}}{}^{m}{{c}_{m-1}}{{x}^{m-1}}+{{\left( -1 \right)}^{m}}{}^{m}{{c}_{m}}{{x}^{m}}
Multiplying by xn{{x}^{n}} to both sides of the above expansion, we get
(1x)mxn=mc0xnmc1xn+1+mc2xn+2+.....(1)m1mcm1xm+n1+(1)mmcmxm+n{{\left( 1-x \right)}^{m}}{{x}^{n}}={}^{m}{{c}_{0}}{{x}^{n}}-{}^{m}{{c}_{1}}{{x}^{n+1}}+{}^{m}{{c}_{2}}{{x}^{n+2}}+.....{{\left( -1 \right)}^{m-1}}{}^{m}{{c}_{m-1}}{{x}^{m+n-1}}+{{\left( -1 \right)}^{m}}{}^{m}{{c}_{m}}{{x}^{m+n}}
Integrating the above series to both sides from the limit 0 to 10\text{ to }1
01(1x)mxndx=01mc0xndx01mc1xn+1dx+01mc2xn+2dx+.........01(1)mmcmxm+ndx............(4)\int\limits_{0}^{1}{{{\left( 1-x \right)}^{m}}{{x}^{n}}dx}=\int_{0}^{1}{{}^{m}{{c}_{0}}{{x}^{n}}dx-}\int_{0}^{1}{{}^{m}{{c}_{1}}{{x}^{n+1}}dx+\int_{0}^{1}{{}^{m}{{c}_{2}}{{x}^{n+2}}dx+.........\int_{0}^{1}{{{\left( -1 \right)}^{m}}{}^{m}{{c}_{m}}{{x}^{m+n}}dx............\left( 4 \right)}}}
We have
xm=xm+1m+1\int{{{x}^{m}}=\dfrac{{{x}^{m+1}}}{m+1}}
Using the above formula in the equation (4)\left( 4 \right)
01(1x)mxndxmc0xn+1n+11 0 mc1xn+2n+21 0 +........(1)mmcmxn+m+1n+m+11 0 \int_{0}^{1}{{{\left( 1-x \right)}^{m}}{{x}^{n}}dx}-\dfrac{{}^{m}{{c}_{0}}{{x}^{n+1}}}{n+1}\left| \begin{matrix} 1 \\\ 0 \\\ \end{matrix}- \right.\dfrac{{}^{m}{{c}_{1}}{{x}^{n+2}}}{n+2}\left| \begin{matrix} 1 \\\ 0 \\\ \end{matrix} \right.+........{{\left( -1 \right)}^{m}}\dfrac{{}^{m}{{c}_{m}}{{x}^{n+m+1}}}{n+m+1}\left| \begin{matrix} 1 \\\ 0 \\\ \end{matrix} \right.
Applying the limits, we get
01(1x)mxndx=mc0n+1mc1n+2+mc2n+3+........(1)mmcmn+m+1\int_{0}^{1}{{{\left( 1-x \right)}^{m}}{{x}^{n}}dx}=\dfrac{{}^{m}{{c}_{0}}}{n+1}-\dfrac{{}^{m}{{c}_{1}}}{n+2}+\dfrac{{}^{m}{{c}_{2}}}{n+3}+........{{\left( -1 \right)}^{m}}\dfrac{{}^{m}{{c}_{m}}}{n+m+1}
Rewriting the above equation in summation form we will get RHS part as
k=0k=m(1)kmckn+k+1=01(1x)mxndx......(5)\sum\limits_{k=0}^{k=m}{{{\left( -1 \right)}^{k}}\dfrac{{}^{m}{{c}_{k}}}{n+k+1}}=\int_{0}^{1}{{{\left( 1-x \right)}^{m}}{{x}^{n}}dx}......\left( 5 \right)
We have a property of definite integral as;
abf(x)dx=abf(a+bx)dx\int_{a}^{b}{f\left( x \right)dx}=\int_{a}^{b}{f\left( a+b-x \right)dx}
We can use the above property with equation (5)\left( 5 \right) as
k=0km(1)kmckn+k+1=01(1x)mxndx=01(1(0+1x))m(0+1x)ndx =01xm(1x)ndx \begin{aligned} & \sum\limits_{k=0}^{k-m}{\dfrac{{{\left( -1 \right)}^{k}}{}^{m}{{c}_{k}}}{n+k+1}=\int_{0}^{1}{{{\left( 1-x \right)}^{m}}{{x}^{n}}dx}=\int_{0}^{1}{{{\left( 1-\left( 0+1-x \right) \right)}^{m}}{{\left( 0+1-x \right)}^{n}}dx}} \\\ & =\int_{0}^{1}{{{x}^{m}}{{\left( 1-x \right)}^{n}}dx} \\\ \end{aligned}
Therefore,
k=0k=m(1)kmckn+m+1=01xm(1x)ndx............(6)\sum\limits_{k=0}^{k=m}{\dfrac{{{\left( -1 \right)}^{k}}{}^{m}{{c}_{k}}}{n+m+1}=\int_{0}^{1}{{{x}^{m}}{{\left( 1-x \right)}^{n}}dx............\left( 6 \right)}}
Now, comparing the equation (3)&(6)\left( 3 \right)\And \left( 6 \right) ,the RHS part of both the equations are equal, hence, the LHS part of the equation should also be equal.
k=0n(1)knck1k+m+1=k=0m(1)kmck1k+n+1\sum\limits_{k=0}^{n}{{{\left( -1 \right)}^{k}}{}^{n}{{c}_{k}}\dfrac{1}{k+m+1}=}\sum\limits_{k=0}^{m}{{{\left( -1 \right)}^{k}}{}^{m}{{c}_{k}}\dfrac{1}{k+n+1}}
Hence proved.

Note: No need to solve 01xm(1x)ndx or 01xn(1x)m\int_{0}^{1}{{{x}^{m}}{{\left( 1-x \right)}^{n}}dx\text{ or }}\int_{0}^{1}{{{x}^{n}}{{\left( 1-x \right)}^{m}}} further. As we can use the property of definite integral. One can waste his/her time with the integral part.
One can think why integration is used, the reason is simple terms m+1,m+2.....m+n+1 or n+1,n+2,....m+n+1m+1,m+2.....m+n+1\text{ or }n+1,n+2,....m+n+1 are in denominator and xm=xm+1m+1\int{{{x}^{m}}=\dfrac{{{x}^{m+1}}}{m+1}} , hence we need use integration only by observation of the given series. If the terms m+1,m+2.....m+n+1 or n,n+1,n+2.....n+m+1m+1,m+2.....m+n+1\text{ or }n,n+1,n+2.....n+m+1 were in multiplication with the terms mc0,mc1,mc2...... or nc0,nc1,nc2.....ncn{}^{m}{{c}_{0}},{}^{m}{{c}_{1}},{}^{m}{{c}_{2}}......\text{ or }{}^{n}{{c}_{0}},{}^{n}{{c}_{1}},{}^{n}{{c}_{2}}.....{}^{n}{{c}_{n}} then we need to use concept of differentiation. Hence observation is the key point of this question.
Another approach would be that we can take expansion of (1+x)n or (1+x)m{{\left( 1+x \right)}^{n}}\text{ or }{{\left( 1+x \right)}^{m}} and multiply it by xm or xn{{x}^{m}}\text{ or }{{x}^{n}} respectively, then integration the series from 1 to 0-1\text{ to }0 to get the required given series.