Solveeit Logo

Question

Question: Prove that \[\sinh \left( {a + b} \right) = \sinh a\cosh b + \sinh b\cosh a\]....

Prove that sinh(a+b)=sinhacoshb+sinhbcosha\sinh \left( {a + b} \right) = \sinh a\cosh b + \sinh b\cosh a.

Explanation

Solution

We will take the term on the right-hand side and we will use the identity i.e., coshx=ex+ex2\cosh x = \dfrac{{{e^x} + {e^{ - x}}}}{2} and sinhx=exex2\sinh x = \dfrac{{{e^x} - {e^{ - x}}}}{2}. Then we will put these values in the right-hand side and simplify. At last, we will put sinh(a+b)=ea+be(a+b)2\sinh \left( {a + b} \right) = \dfrac{{{e^{a + b}} - {e^{ - \left( {a + b} \right)}}}}{2} to prove sinh(a+b)=sinhacoshb+sinhbcosha\sinh \left( {a + b} \right) = \sinh a\cosh b + \sinh b\cosh a.

Complete step by step answer:
As we know that coshx=ex+ex2\cosh x = \dfrac{{{e^x} + {e^{ - x}}}}{2} and sinhx=exex2\sinh x = \dfrac{{{e^x} - {e^{ - x}}}}{2}.
Similarly, cosha=ea+ea2\cosh a = \dfrac{{{e^a} + {e^{ - a}}}}{2}, coshb=eb+eb2\cosh b = \dfrac{{{e^b} + {e^{ - b}}}}{2}, sinha=eaea2\sinh a = \dfrac{{{e^a} - {e^{ - a}}}}{2} and sinhb=ebeb2\sinh b = \dfrac{{{e^b} - {e^{ - b}}}}{2}.
Here, RHS=sinhacoshb+sinhbcosha{\text{RHS}} = \sinh a\cosh b + \sinh b\cosh a
Putting the values in the right-hand side, we get
RHS=sinhacoshb+sinhbcosha\Rightarrow {\text{RHS}} = \sinh a\cosh b + \sinh b\cosh a
=(eaea2)(eb+eb2)+(ebeb2)(ea+ea2)= \left( {\dfrac{{{e^a} - {e^{ - a}}}}{2}} \right)\left( {\dfrac{{{e^b} + {e^{ - b}}}}{2}} \right) + \left( {\dfrac{{{e^b} - {e^{ - b}}}}{2}} \right)\left( {\dfrac{{{e^a} + {e^{ - a}}}}{2}} \right)
On multiplying the terms, we get
=ea+b+eabebae(a+b)4+ea+b+ebaeabe(a+b)4= \dfrac{{{e^{a + b}} + {e^{a - b}} - {e^{b - a}} - {e^{ - \left( {a + b} \right)}}}}{4} + \dfrac{{{e^{a + b}} + {e^{b - a}} - {e^{a - b}} - {e^{ - \left( {a + b} \right)}}}}{4}
On taking LCM and common, we get
=14(ea+b+eabebae(a+b)+ea+b+ebaeabe(a+b))= \dfrac{1}{4}\left( {{e^{a + b}} + {e^{a - b}} - {e^{b - a}} - {e^{ - \left( {a + b} \right)}} + {e^{a + b}} + {e^{b - a}} - {e^{a - b}} - {e^{ - \left( {a + b} \right)}}} \right)
Cancelling the same terms with opposite sign, we get
=14(ea+be(a+b)+ea+be(a+b))= \dfrac{1}{4}\left( {{e^{a + b}} - {e^{ - \left( {a + b} \right)}} + {e^{a + b}} - {e^{ - \left( {a + b} \right)}}} \right)
=14(2ea+b2e(a+b))= \dfrac{1}{4}\left( {2{e^{a + b}} - 2{e^{ - \left( {a + b} \right)}}} \right)
Taking two common, we get
=24(ea+be(a+b))= \dfrac{2}{4}\left( {{e^{a + b}} - {e^{ - \left( {a + b} \right)}}} \right)
=ea+be(a+b)2= \dfrac{{{e^{a + b}} - {e^{ - \left( {a + b} \right)}}}}{2}
As sinh(a+b)=ea+be(a+b)2\sinh \left( {a + b} \right) = \dfrac{{{e^{a + b}} - {e^{ - \left( {a + b} \right)}}}}{2}. Using this, we get right hand side as sinh(a+b)\sinh \left( {a + b} \right) i.e.,
RHS=sinh(a+b)\Rightarrow {\text{RHS}} = \sinh \left( {a + b} \right), which is equal to the left-hand side.
Hence, proved that sinh(a+b)=sinhacoshb+sinhbcosha\sinh \left( {a + b} \right) = \sinh a\cosh b + \sinh b\cosh a.

Note:
The hyperbolic trigonometric functions consider the area as their argument, known as ‘the hyperbolic angle’. Hyperbolic functions share almost similar properties to trigonometric functions like in the trigonometry, the derivative of sinx\sin x is cosx\cos x and cosx\cos x is sinx - \sin x and the derivative of sinhx\sinh x is coshx\cosh x and coshx\cosh x is sinhx \sinh x.