Question
Mathematics Question on Trigonometric Functions of Sum and Difference of Two Angles
Prove that sin2 6x-sin2 4x=sin 2x sin 10x
Answer
It is known that sinA+sinB=2sin(2A+B)cos(2A−B),sinA−sinB=2cos(2A+B)sin(2A−B)
∴L.H.S. = sin26x-sin24x
= (sin 6x+sin 4x) (sin 6x-sin 4x)
=[2sin(26x+4x)cos(26x−4x)][2cos(26x+4x).sin(26x−4x)]
= (2 sin 5x cos x) (2 cos 5x sin x)
= (2 sin 5x cos 5x) (2 sin x cos x)
= sin 10x sin 2x
= R.H.S