Solveeit Logo

Question

Mathematics Question on Trigonometric Functions of Sum and Difference of Two Angles

Prove that sin2 6x-sin2 4x=sin 2x sin 10x

Answer

It is known that sinA+sinB=2sin(A+B2)cos(AB2),sinAsinB=2cos(A+B2)sin(AB2)sinA+sinB=2sin(\frac{A+B}{2})cos(\frac{A-B}{2}),\,sinA-sinB=2cos(\frac{A+B}{2})sin(\frac{A-B}{2})

∴L.H.S. = sin26x-sin24x

= (sin 6x+sin 4x) (sin 6x-sin 4x)

=[2sin(6x+4x2)cos(6x4x2)][2cos(6x+4x2).sin(6x4x2)]=[2\,sin(\frac{6x+4x}{2})cos(\frac{6x-4x}{2})][2\,cos(\frac{6x+4x}{2}).sin(\frac{6x-4x}{2})]

= (2 sin 5x cos x) (2 cos 5x sin x)

= (2 sin 5x cos 5x) (2 sin x cos x)

= sin 10x sin 2x

= R.H.S