Question
Mathematics Question on Trigonometric Functions of Sum and Difference of Two Angles
Prove that sin x+sin 3x+sin 5x+sin 7x=4 cos x cos 2x sin 4x.
Answer
It is known that
sinA+sinB=2sin(2A+B).cos(2A−B)
L.H.S. = sin x+ sin 3x+sin 5x+sin 7x
=(sin x+sin 5x)+(sin 3x+sin 7x)
=2sin(2x+5x).cos(2x−5x)+2sin(23x+zx)cos(23x−7x)
=2 sin 3x cos(-2x)+2sin5x cos(-2x)
=2sin 3x cos 2x+2 sin 5x cos 2x
=2 cos 2x[sin3x+sin5x]
=2cos2x[2sin(23x+5x).cos(23x−5x)]
=2 cos 2x [2 sin 4x.cos(-x)]
=4 cos 2x sin 4x cos x=R.H.S.