Solveeit Logo

Question

Question: Prove that: \(\sin x + \sin 3x + \sin 5x + \sin 7x = 4\cos x\cos 2x\sin 4x\)...

Prove that:
sinx+sin3x+sin5x+sin7x=4cosxcos2xsin4x\sin x + \sin 3x + \sin 5x + \sin 7x = 4\cos x\cos 2x\sin 4x

Explanation

Solution

For a question like this we approach the solution by simplifying anyone the side and proving it equal to the other side, here also we will simplify the left-hand side using some of the trigonometric formulas like
sinA+sinB=2sin(A+B2)cos(AB2)\sin A + \sin B = 2\sin \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)
cosA+cosB=2cos(A+B2)cos(AB2)\cos A + \cos B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)
We simplify in such a manner that it results in the equivalent value to the other side expression

Complete step by step Answer:

Given data: sinx+sin3x+sin5x+sin7x=4cosxcos2xsin4x\sin x + \sin 3x + \sin 5x + \sin 7x = 4\cos x\cos 2x\sin 4x
Taking the left-hand side
sinx+sin3x+sin5x+sin7x\Rightarrow \sin x + \sin 3x + \sin 5x + \sin 7x
On rearranging we get,
sinx+sin7x+sin3x+sin5x\Rightarrow \sin x + \sin 7x + \sin 3x + \sin 5x
Using the formula sinA+sinB=2sin(A+B2)cos(AB2)\sin A + \sin B = 2\sin \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right) in the first two and last two terms, we get,
2sin(4x)cos3x+2sin(4x)cosx\Rightarrow 2\sin (4x)\cos 3x + 2\sin (4x)\cos x
Taking 2sin(4x) common from both the terms
2sin(4x)[cos3x+cosx]\Rightarrow 2\sin (4x)\left[ {\cos 3x + \cos x} \right]
Now using the formula cosA+cosB=2cos(A+B2)cos(AB2)\cos A + \cos B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right), we get,
2sin(4x)2cos(2x)cos(x)\Rightarrow 2\sin (4x)2\cos (2x)\cos (x)
4cosxcos2xsin4x \Rightarrow 4\cos x\cos 2x\sin 4x, which is equal to the right-hand side in the given equation
Since, Left-hand side=right-hand side
We have proved the given equation

Note: An alternative method for the solution of the given question can be
This time we’ll simplify the term in the right-hand side and will prove it equal to the term in the left-hand side
4cosxcos2xsin4x\Rightarrow 4\cos x\cos 2x\sin 4x
4cos(3xx2)cos(3x+x2)sin4x\Rightarrow 4\cos \left( {\dfrac{{3x - x}}{2}} \right)\cos \left( {\dfrac{{3x + x}}{2}} \right)\sin 4x
Using the formula 2cos(A+B2)cos(AB2)=cosA+cosB2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right) = \cos A + \cos B
2[cos3x+cosx]sin4x\Rightarrow 2[\cos 3x + \cos x]\sin 4x
2sin4xcos3x+2cosxsin4x\Rightarrow 2\sin 4x\cos 3x + 2\cos x\sin 4x
2sin(7x+x2)cos(7xx2)+2cos(5x3x2)sin(5x+3x2)\Rightarrow 2\sin \left( {\dfrac{{7x + x}}{2}} \right)\cos \left( {\dfrac{{7x - x}}{2}} \right) + 2\cos \left( {\dfrac{{5x - 3x}}{2}} \right)\sin \left( {\dfrac{{5x + 3x}}{2}} \right)
Using the formula 2sin(A+B2)cos(AB2)=sinA+sinB2\sin \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right) = \sin A + \sin B
sin7x+sinx+sin3x+sin5x\Rightarrow \sin 7x + \sin x + \sin 3x + \sin 5x, which is equal to the left-hand side in the given equation
Since, Left-hand side=right-hand side
We have proved the given equation