Question
Mathematics Question on Trigonometric Functions of Sum and Difference of Two Angles
Prove that. sin(n+1) xsin(n+2)x+cos(n+1) xcos(n+2)x=cosx.
Answer
L.H.S. = sin (n+1)x sin(n+2)x + cos (n+1)x cos(n+2)x
=21[2sin(n+1)xsin(n+2)x+cos(n+1)xcos(n+2)x]
=\frac{1}{2}\begin{bmatrix} cos\left \\{ (n+1)x-(n+2)x \right \\}-cos\left \\{ (n+1)x+(n+2)x \right \\} \\\ +cos\left \\{ (n+1)x+(n+2)x \right \\}+cos\left \\{ (n+1)x-(n+2)x \right \\} \end{bmatrix}
[−2sinAsinB−cos(A−B)]
[2cosAcosB=cos(A+B)+cos(A−B)]
=21×2cos(n+1)x−(n+2)x
=cos(−x)=cosx=R.H.S.