Solveeit Logo

Question

Question: Prove that \(\sin \left( -{{420}^{\circ }} \right)\cos \left( {{390}^{\circ }} \right)+\cos \left( -...

Prove that sin(420)cos(390)+cos(660)sin(330)=1\sin \left( -{{420}^{\circ }} \right)\cos \left( {{390}^{\circ }} \right)+\cos \left( -{{660}^{\circ }} \right)\sin \left( {{330}^{\circ }} \right)=-1 .

Explanation

Solution

Hint:For solving this question, we will use the formulas like sin(θ)=sinθ\sin \left( -\theta \right)=-\sin \theta to write sin(420)=sin(420)\sin \left( -{{420}^{\circ }} \right)=-\sin \left( {{420}^{\circ }} \right) and cos(θ)=cosθ\cos \left( -\theta \right)=\cos \theta to write cos(660)=cos(660)\cos \left( -{{660}^{\circ }} \right)=\cos \left( {{660}^{\circ }} \right) . After that, we will write the given trigonometric ratios into the form of sin420=sin(2π+60)\sin {{420}^{\circ }}=\sin \left( 2\pi +{{60}^{\circ }} \right) , cos390=cos(2π+30)\cos {{390}^{\circ }}=\cos \left( 2\pi +{{30}^{\circ }} \right) , cos660=cos(4π60)\cos {{660}^{\circ }}=\cos \left( 4\pi -{{60}^{\circ }} \right) and sin330=sin(2π30)\sin {{330}^{\circ }}=\sin \left( 2\pi -{{30}^{\circ }} \right) . Then, we will use the formulas like sin(2π+θ)=sinθ\sin \left( 2\pi +\theta \right)=\sin \theta , cos(2π+θ)=cosθ\cos \left( 2\pi +\theta \right)=\cos \theta , cos(4πθ)=cosθ\cos \left( 4\pi -\theta \right)=\cos \theta and sin(2πθ)=sinθ\sin \left( 2\pi -\theta \right)=-\sin \theta to simplify further. And finally, we will use the result of trigonometric ratios like sin60=cos30=32\sin {{60}^{\circ }}=\cos {{30}^{\circ }}=\dfrac{\sqrt{3}}{2} and cos60=sin30=12\cos {{60}^{\circ }}=\sin {{30}^{\circ }}=\dfrac{1}{2} to solve further and prove the desired result easily.

Complete step-by-step answer:
Given:
We have to prove the following equation:
sin(420)cos(390)+cos(660)sin(330)=1\sin \left( -{{420}^{\circ }} \right)\cos \left( {{390}^{\circ }} \right)+\cos \left( -{{660}^{\circ }} \right)\sin \left( {{330}^{\circ }} \right)=-1
Now, we will simplify the term on the left-hand side and prove that it is equal to the term on the right-hand side.
Now, before we proceed we should know the following formulas:
sin(θ)=sinθ...............(1) cos(θ)=cosθ.................(2) sin(2nπ+θ)=sinθ...........(3) cos(2nπ+θ)=cosθ..........(4) cos(2nπθ)=cosθ...........(5) sin(2nπθ)=sinθ..........(6) \begin{aligned} & \sin \left( -\theta \right)=-\sin \theta ...............\left( 1 \right) \\\ & \cos \left( -\theta \right)=\cos \theta .................\left( 2 \right) \\\ & \sin \left( 2n\pi +\theta \right)=\sin \theta ...........\left( 3 \right) \\\ & \cos \left( 2n\pi +\theta \right)=\cos \theta ..........\left( 4 \right) \\\ & \cos \left( 2n\pi -\theta \right)=\cos \theta ...........\left( 5 \right) \\\ & \sin \left( 2n\pi -\theta \right)=-\sin \theta ..........\left( 6 \right) \\\ \end{aligned}
Now, we will use the above six formulas to simplify the term on the left-hand side.
On the left-hand side, we have sin(420)cos(390)+cos(660)sin(330)\sin \left( -{{420}^{\circ }} \right)\cos \left( {{390}^{\circ }} \right)+\cos \left( -{{660}^{\circ }} \right)\sin \left( {{330}^{\circ }} \right) .
Now, we will use the formula from the equation (1) to write sin(420)=sin(420)\sin \left( -{{420}^{\circ }} \right)=-\sin \left( {{420}^{\circ }} \right) and formula from the equation (2) to write cos(660)=cos(660)\cos \left( -{{660}^{\circ }} \right)=\cos \left( {{660}^{\circ }} \right) in the term on the left-hand side. Then,
sin(420)cos(390)+cos(660)sin(330) sin(420)cos(390)+cos(660)sin(330) \begin{aligned} & \sin \left( -{{420}^{\circ }} \right)\cos \left( {{390}^{\circ }} \right)+\cos \left( -{{660}^{\circ }} \right)\sin \left( {{330}^{\circ }} \right) \\\ & \Rightarrow -\sin \left( {{420}^{\circ }} \right)\cos \left( {{390}^{\circ }} \right)+\cos \left( {{660}^{\circ }} \right)\sin \left( {{330}^{\circ }} \right) \\\ \end{aligned}
Now, we will write sin(420)=sin(360+60)\sin \left( {{420}^{\circ }} \right)=\sin \left( {{360}^{\circ }}+{{60}^{\circ }} \right) , cos(390)=cos(360+30)\cos \left( {{390}^{\circ }} \right)=\cos \left( {{360}^{\circ }}+{{30}^{\circ }} \right) , cos(660)=cos(72060)\cos \left( {{660}^{\circ }} \right)=\cos \left( {{720}^{\circ }}-{{60}^{\circ }} \right) and sin(330)=sin(36030)\sin \left( {{330}^{\circ }} \right)=\sin \left( {{360}^{\circ }}-{{30}^{\circ }} \right) in the above term. Then,
sin(420)cos(390)+cos(660)sin(330) sin(360+60)cos(360+30)+cos(72060)sin(36030) \begin{aligned} & -\sin \left( {{420}^{\circ }} \right)\cos \left( {{390}^{\circ }} \right)+\cos \left( {{660}^{\circ }} \right)\sin \left( {{330}^{\circ }} \right) \\\ & \Rightarrow -\sin \left( {{360}^{\circ }}+{{60}^{\circ }} \right)\cos \left( {{360}^{\circ }}+{{30}^{\circ }} \right)+\cos \left( {{720}^{\circ }}-{{60}^{\circ }} \right)\sin \left( {{360}^{\circ }}-{{30}^{\circ }} \right) \\\ \end{aligned}
Now, as we know that πc=180{{\pi }^{c}}={{180}^{\circ }} so, we can write 360=2πc{{360}^{\circ }}=2{{\pi }^{c}} and 720=4πc{{720}^{\circ }}=4{{\pi }^{c}} in the above term. Then,
sin(360+60)cos(360+30)+cos(72060)sin(36030) sin(2π+60)cos(2π+30)+cos(4π60)sin(2π30) \begin{aligned} & -\sin \left( {{360}^{\circ }}+{{60}^{\circ }} \right)\cos \left( {{360}^{\circ }}+{{30}^{\circ }} \right)+\cos \left( {{720}^{\circ }}-{{60}^{\circ }} \right)\sin \left( {{360}^{\circ }}-{{30}^{\circ }} \right) \\\ & \Rightarrow -\sin \left( 2\pi +{{60}^{\circ }} \right)\cos \left( 2\pi +{{30}^{\circ }} \right)+\cos \left( 4\pi -{{60}^{\circ }} \right)\sin \left( 2\pi -{{30}^{\circ }} \right) \\\ \end{aligned}
Now, when we put n=1n=1 in equation (3), then sin(2π+θ)=sinθ\sin \left( 2\pi +\theta \right)=\sin \theta so, we can write sin(2π+60)=sin60\sin \left( 2\pi +{{60}^{\circ }} \right)=\sin {{60}^{\circ }} in the above equation. Then,
sin(2π+60)cos(2π+30)+cos(4π60)sin(2π30) sin60cos(2π+30)+cos(4π60)sin(2π30) \begin{aligned} & -\sin \left( 2\pi +{{60}^{\circ }} \right)\cos \left( 2\pi +{{30}^{\circ }} \right)+\cos \left( 4\pi -{{60}^{\circ }} \right)\sin \left( 2\pi -{{30}^{\circ }} \right) \\\ & \Rightarrow -\sin {{60}^{\circ }}\cos \left( 2\pi +{{30}^{\circ }} \right)+\cos \left( 4\pi -{{60}^{\circ }} \right)\sin \left( 2\pi -{{30}^{\circ }} \right) \\\ \end{aligned}
Now, when we put n=1n=1 in equation (4), then cos(2π+θ)=cosθ\cos \left( 2\pi +\theta \right)=\cos \theta so, we can write cos(2π+30)=cos30\cos \left( 2\pi +{{30}^{\circ }} \right)=\cos {{30}^{\circ }} in the above term. Then,
sin60cos(2π+30)+cos(4π60)sin(2π30) sin60cos30+cos(4π60)sin(2π30) \begin{aligned} & -\sin {{60}^{\circ }}\cos \left( 2\pi +{{30}^{\circ }} \right)+\cos \left( 4\pi -{{60}^{\circ }} \right)\sin \left( 2\pi -{{30}^{\circ }} \right) \\\ & \Rightarrow -\sin {{60}^{\circ }}\cos {{30}^{\circ }}+\cos \left( 4\pi -{{60}^{\circ }} \right)\sin \left( 2\pi -{{30}^{\circ }} \right) \\\ \end{aligned}
Now, when we put n=2n=2 in equation (5), then cos(4πθ)=cosθ\cos \left( 4\pi -\theta \right)=\cos \theta so, we can write cos(4π60)=cos60\cos \left( 4\pi -{{60}^{\circ }} \right)=\cos {{60}^{\circ }} in the above term. Then,
sin60cos30+cos(4π60)sin(2π30) sin60cos30+cos60sin(2π30) \begin{aligned} & -\sin {{60}^{\circ }}\cos {{30}^{\circ }}+\cos \left( 4\pi -{{60}^{\circ }} \right)\sin \left( 2\pi -{{30}^{\circ }} \right) \\\ & \Rightarrow -\sin {{60}^{\circ }}\cos {{30}^{\circ }}+\cos {{60}^{\circ }}\sin \left( 2\pi -{{30}^{\circ }} \right) \\\ \end{aligned}
Now, when we put n=1n=1 in equation (6), then sin(2πθ)=sinθ\sin \left( 2\pi -\theta \right)=-\sin \theta so, we can write sin(2π30)=sin30\sin \left( 2\pi -{{30}^{\circ }} \right)=-\sin {{30}^{\circ }} in the above term. Then,
sin60cos30+cos60sin(2π30) sin60cos30cos60sin30 (sin60cos30+cos60sin30) \begin{aligned} & -\sin {{60}^{\circ }}\cos {{30}^{\circ }}+\cos {{60}^{\circ }}\sin \left( 2\pi -{{30}^{\circ }} \right) \\\ & \Rightarrow -\sin {{60}^{\circ }}\cos {{30}^{\circ }}-\cos {{60}^{\circ }}\sin {{30}^{\circ }} \\\ & \Rightarrow -\left( \sin {{60}^{\circ }}\cos {{30}^{\circ }}+\cos {{60}^{\circ }}\sin {{30}^{\circ }} \right) \\\ \end{aligned}
Now, as we know that, sin60=cos30=32\sin {{60}^{\circ }}=\cos {{30}^{\circ }}=\dfrac{\sqrt{3}}{2} and cos60=sin30=12\cos {{60}^{\circ }}=\sin {{30}^{\circ }}=\dfrac{1}{2} . Then,
(sin60cos30+cos60sin30) (32×32+12×12) (34+14) 1 \begin{aligned} & -\left( \sin {{60}^{\circ }}\cos {{30}^{\circ }}+\cos {{60}^{\circ }}\sin {{30}^{\circ }} \right) \\\ & \Rightarrow -\left( \dfrac{\sqrt{3}}{2}\times \dfrac{\sqrt{3}}{2}+\dfrac{1}{2}\times \dfrac{1}{2} \right) \\\ & \Rightarrow -\left( \dfrac{3}{4}+\dfrac{1}{4} \right) \\\ & \Rightarrow -1 \\\ \end{aligned}
Now, from the above result, we conclude that the value of the term sin(420)cos(390)+cos(660)sin(330)\sin \left( -{{420}^{\circ }} \right)\cos \left( {{390}^{\circ }} \right)+\cos \left( -{{660}^{\circ }} \right)\sin \left( {{330}^{\circ }} \right) will be equal to 1-1 . Then,
sin(420)cos(390)+cos(660)sin(330)=1\sin \left( -{{420}^{\circ }} \right)\cos \left( {{390}^{\circ }} \right)+\cos \left( -{{660}^{\circ }} \right)\sin \left( {{330}^{\circ }} \right)=-1
Now, from the above result, we conclude that the term on the left-hand side is equal to the term on the right-hand side.
Thus, sin(420)cos(390)+cos(660)sin(330)=1\sin \left( -{{420}^{\circ }} \right)\cos \left( {{390}^{\circ }} \right)+\cos \left( -{{660}^{\circ }} \right)\sin \left( {{330}^{\circ }} \right)=-1 .
Hence, proved.

Note: Here, the student should first understand what we have to prove in the question. After that, we should proceed in a stepwise manner and apply trigonometric formulas like sin(2π+θ)=sinθ\sin \left( 2\pi +\theta \right)=\sin \theta , cos(2π+θ)=cosθ\cos \left( 2\pi +\theta \right)=\cos \theta , cos(4πθ)=cosθ\cos \left( 4\pi -\theta \right)=\cos \theta and sin(2πθ)=sinθ\sin \left( 2\pi -\theta \right)=-\sin \theta correctly. Moreover, we could have also used the formula sin(A+B)=sinAcosB+sinBcosA\sin \left( A+B \right)=\sin A\cos B+\sin B\cos A to write (sin60cos30+cos60sin30)=sin(60+30)=sin90-\left( \sin {{60}^{\circ }}\cos {{30}^{\circ }}+\cos {{60}^{\circ }}\sin {{30}^{\circ }} \right)=-\sin \left( {{60}^{\circ }}+{{30}^{\circ }} \right)=-\sin {{90}^{\circ }} directly and then, used the result sin90=1\sin {{90}^{\circ }}=1 to prove the desired result.