Solveeit Logo

Question

Question: Prove that \(\sin {{\cot }^{-1}}\tan {{\cos }^{-1}}x=\sin {{\operatorname{cosec}}^{-1}}\cot {{\tan }...

Prove that sincot1tancos1x=sincosec1cottan1x=x\sin {{\cot }^{-1}}\tan {{\cos }^{-1}}x=\sin {{\operatorname{cosec}}^{-1}}\cot {{\tan }^{-1}}x=x, where x[0,1]x\in \left[ 0,1 \right].

Explanation

Solution

According to the Pythagoras theorem, in a right angled triangle, (Hypotenuse)2=(Base)2+(Height)2{{\left( Hypotenuse \right)}^{2}}={{\left( Base \right)}^{2}}+{{\left( Height \right)}^{2}}. We will use this concept of Pythagoras theorem to change the angle of the trigonometric function. We will first prove sincot1tancos1x=x\sin {{\cot }^{-1}}\tan {{\cos }^{-1}}x=x and then we will prove sincosec1cottan1x=x\sin {{\operatorname{cosec}}^{-1}}\cot {{\tan }^{-1}}x=x using the trigonometric properties.

Complete step by step answer:
It is given in the question that we have to prove sincot1tancos1x=sincosect1cottan1x=x\sin {{\cot }^{-1}}\tan {{\cos }^{-1}}x=\sin \operatorname{cosec}{{\operatorname{t}}^{-1}}\cot {{\tan }^{-1}}x=x, where x[0,1]x\in \left[ 0,1 \right]. Now, according to the Pythagoras theorem, in a right angled triangle, (Hypotenuse)2=(Base)2+(Height)2{{\left( Hypotenuse \right)}^{2}}={{\left( Base \right)}^{2}}+{{\left( Height \right)}^{2}}. We will use this concept to prove sincot1tancos1x=x\sin {{\cot }^{-1}}\tan {{\cos }^{-1}}x=x first and then sincosec1cottan1x=x\sin {{\operatorname{cosec}}^{-1}}\cot {{\tan }^{-1}}x=x. Let us suppose a triangle with the hypotenuse = 1, base = x, and height = 1x2\sqrt{1-{{x}^{2}}}. The figure for the same is given below.

We will change the angle of the trigonometric functions with the help of this triangle. Let us consider the first case, sincot1tancos1x\sin {{\cot }^{-1}}\tan {{\cos }^{-1}}x.
From the above triangle, we have the value of cosθ=basehypotenuse=x1=x\cos \theta =\dfrac{base}{hypotenuse}=\dfrac{x}{1}=x . Also, we can find tanθ=heightbase=1x2x\tan \theta =\dfrac{height}{base}=\dfrac{\sqrt{1-{{x}^{2}}}}{x} .
Considering the inverse trigonometric function, we can get θ=cos1x and θ=tan11x2x\theta ={{\cos }^{-1}}x\text{ and }\theta ={{\tan }^{-1}}\dfrac{\sqrt{1-{{x}^{2}}}}{x} .
Now, from the above, it is clear that we can write cos1x{{\cos }^{-1}}x as tan11x2x{{\tan }^{-1}}\dfrac{\sqrt{1-{{x}^{2}}}}{x} , so substituting this in place of cos1x{{\cos }^{-1}}x in the expression, we get,
sincot1tantan11x2x\Rightarrow \sin {{\cot }^{-1}}\tan {{\tan }^{-1}}\dfrac{\sqrt{1-{{x}^{2}}}}{x}
We know that tantan1(x)=x\tan {{\tan }^{-1}}\left( x \right)=x, so we will apply that and get the above expression as,
sincot11x2x\Rightarrow \sin {{\cot }^{-1}}\dfrac{\sqrt{1-{{x}^{2}}}}{x}
We know that cot1x=tan11x{{\cot }^{-1}}x={{\tan }^{-1}}\dfrac{1}{x}, so applying that, we get,
sintan1x1x2\Rightarrow \sin {{\tan }^{-1}}\dfrac{x}{\sqrt{1-{{x}^{2}}}}
Let us suppose a triangle with the hypotenuse = 1, height = x, and base = 1x2\sqrt{1-{{x}^{2}}}. The figure for the same is given below.

From the above triangle, we can get tanθ=heightbase=x1x2\tan \theta =\dfrac{height}{base}=\dfrac{x}{\sqrt{1-{{x}^{2}}}} and sinθ=heighthypotenuse=x1=x\sin \theta =\dfrac{height}{hypotenuse}=\dfrac{x}{1}=x . Considering the inverse trigonometric functions, we can write that θ=tan1x1x2 and θ=sin1x\theta ={{\tan }^{-1}}\dfrac{x}{\sqrt{1-{{x}^{2}}}}\text{ and }\theta ={{\sin }^{-1}}x .
Now, from the above, it is clear that we can write tan1x1x2{{\tan }^{-1}}\dfrac{x}{\sqrt{1-{{x}^{2}}}} as sin1x{{\sin }^{-1}}x , so substituting this in place of sin1x{{\sin }^{-1}}x in the expression, we get,
sinsin1x\Rightarrow \sin {{\sin }^{-1}}x
We know that sinsin1x=x\sin {{\sin }^{-1}}x=x. Thus, finally, we get,
sincot1tancos1x=x\Rightarrow \sin {{\cot }^{-1}}\tan {{\cos }^{-1}}x=x
Now, let us consider the second case, sincosec1cottan1x\sin {{\operatorname{cosec}}^{-1}}\cot {{\tan }^{-1}}x. We know that tan1x{{\tan }^{-1}}x can be written as cot1(1x){{\cot }^{-1}}\left( \dfrac{1}{x} \right). So, we get,
sincosec1cotcot1(1x)\Rightarrow \sin {{\operatorname{cosec}}^{-1}}\cot {{\cot }^{-1}}\left( \dfrac{1}{x} \right)
We know that cotcot1x=x\cot {{\cot }^{-1}}x=x. So, we get,
sincosec1(1x)\Rightarrow \sin {{\operatorname{cosec}}^{-1}}\left( \dfrac{1}{x} \right)
We know that sinx=1cosec1x\sin x=\dfrac{1}{{{\operatorname{cosec}}^{-1}}x}. So, we get,
sinsin1(x)\Rightarrow \sin {{\sin }^{-1}}\left( x \right)
And we know that we can write sinsin1(x)\sin {{\sin }^{-1}}\left( x \right) as x, so we get,
sincosec1cottan1x=x\Rightarrow \sin {{\operatorname{cosec}}^{-1}}\cot {{\tan }^{-1}}x=x
Therefore, we get, sincot1tancos1x=sincosec1cottan1x=x\sin {{\cot }^{-1}}\tan {{\cos }^{-1}}x=\sin {{\operatorname{cosec}}^{-1}}\cot {{\tan }^{-1}}x=x. Hence, it is proved.

Note: The students may do mistakes while converting the trigonometric functions. We have the term cos1x{{\cos }^{-1}}x, which can also be written as cos1x1{{\cos }^{-1}}\dfrac{x}{1}. We can suppose it as θ\theta and take cos on both sides, so we get cosθ=x1\cos \theta =\dfrac{x}{1}. So, here we can see that x is the base and 1 is the hypotenuse. Therefore, we have considered the sides of the right angled triangle accordingly. This is an important point to consider the sides of the triangle, else we can go wrong.