Solveeit Logo

Question

Question: Prove that \[sin(A + B + C) = \sin A\cos B\cos C + \cos AsinB\cos C + \sin C\cos A\cos B - \sin A...

Prove that
sin(A+B+C)=sinAcosBcosC+cosAsinBcosC+sinCcosAcosBsinAsinBsinCsin(A + B + C) = \sin A\cos B\cos C + \cos AsinB\cos C + \sin C\cos A\cos B - \sin A\sin B\sin C

Explanation

Solution

Here we will assume A+B=xA + B = x and C=yC = y , we will then use the following identities Sin(x+y)=sinxcosy+cosxsiny\operatorname{Sin} (x + y) = \sin x\cos y + \cos x\sin y
cos(x+y)=cosxcosysinxsiny\cos (x + y) = \cos x\cos y - \sin x\sin y
to get the desired answer.

Complete step-by-step answer:
Considering the Left hand side we get:-
LHS=sin(A+B+C)LHS = \sin (A + B + C)
Let A+B=xA + B = x………………(1)
C=yC = y…………………….(2)
Hence we get:-
LHS=sin(x+y)LHS = \sin (x + y)
Now applying the following identity
sin(x+y)=sinxcosy+cosxsiny\operatorname{sin} (x + y) = \sin x\cos y + \cos x\sin y
We get:-
LHS=sinxcosy+cosxsinyLHS = \sin x\cos y + \cos x\sin y
Now putting back the values of x and y from equation 1 and equation 2 we get:-
LHS=sin(A+B)cosC+cos(A+B)sinCLHS = \sin \left( {A + B} \right)\cos C + \cos \left( {A + B} \right)\sin C
Again applying the identities
sin(x+y)=sinxcosy+cosxsiny\operatorname{sin} (x + y) = \sin x\cos y + \cos x\sin y
cos(x+y)=cosxcosysinxsiny\cos (x + y) = \cos x\cos y - \sin x\sin y
We get:-
LHS=[sinAcosB+cosAsinB]cosC+[cosAcosBsinAsinB]sinCLHS = \left[ {\sin A\cos B + \cos A\sin B} \right]\cos C + \left[ {\cos A\cos B - \sin A\sin B} \right]\sin C
Multiplying cosC\cos C and sinC\sin C into the brackets we get:-

LHS=sinAcosBcosC+cosAsinBcosC+sinCcosAcosBsinAsinBsinC  =RHS  LHS = \sin A\cos B\cos C + \cos AsinB\cos C + \sin C\cos A\cos B - \sin A\sin B\sin C \\\ {\text{ }} = RHS \\\

Therefore, L.H.S=R.H.S
Hence proved

Note: When the question contains A+B+C then just let A+B =x and C =y and apply the standard identities and solve them further. And substitute the term as mentioned in identities. The students should apply the correct identities in order to get the desired answer.