Question
Question: Prove that \[sin(A + B + C) = \sin A\cos B\cos C + \cos AsinB\cos C + \sin C\cos A\cos B - \sin A...
Prove that
sin(A+B+C)=sinAcosBcosC+cosAsinBcosC+sinCcosAcosB−sinAsinBsinC
Solution
Here we will assume A+B=x and C=y , we will then use the following identities Sin(x+y)=sinxcosy+cosxsiny
cos(x+y)=cosxcosy−sinxsiny
to get the desired answer.
Complete step-by-step answer:
Considering the Left hand side we get:-
LHS=sin(A+B+C)
Let A+B=x………………(1)
C=y…………………….(2)
Hence we get:-
LHS=sin(x+y)
Now applying the following identity
sin(x+y)=sinxcosy+cosxsiny
We get:-
LHS=sinxcosy+cosxsiny
Now putting back the values of x and y from equation 1 and equation 2 we get:-
LHS=sin(A+B)cosC+cos(A+B)sinC
Again applying the identities
sin(x+y)=sinxcosy+cosxsiny
cos(x+y)=cosxcosy−sinxsiny
We get:-
LHS=[sinAcosB+cosAsinB]cosC+[cosAcosB−sinAsinB]sinC
Multiplying cosC and sinC into the brackets we get:-
Therefore, L.H.S=R.H.S
Hence proved
Note: When the question contains A+B+C then just let A+B =x and C =y and apply the standard identities and solve them further. And substitute the term as mentioned in identities. The students should apply the correct identities in order to get the desired answer.