Question
Question: Prove that \[\sin {{50}^{\circ }}-\sin {{70}^{\circ }}+\sin {{10}^{\circ }}=0\]....
Prove that sin50∘−sin70∘+sin10∘=0.
Explanation
Solution
Hint: Use the formula for sinA+sinB. Take sin50+sin10, simplify it using the formula and substitute it back in the equation. Use the cosine function of trigonometry to solve the rest.
Complete step-by-step answer:
We need to prove that, sin50∘−sin70∘+sin10∘=0−(1)
We know the formula of sinA+sinB.
sinA+sinB=2sin(2A+B)cos(2A−B)
Let us take sin50+sin10, where A=50 and B=10.
sin50+sin10=2sin(250+10)cos(250−10)