Solveeit Logo

Question

Question: Prove that \[{\sin ^4}\dfrac{\pi }{8} + {\sin ^4}\dfrac{{3\pi }}{8} + {\sin ^4}\dfrac{{5\pi }}{8}{\s...

Prove that sin4π8+sin43π8+sin45π8sin47π8=32{\sin ^4}\dfrac{\pi }{8} + {\sin ^4}\dfrac{{3\pi }}{8} + {\sin ^4}\dfrac{{5\pi }}{8}{\sin ^4}\dfrac{{7\pi }}{8} = \dfrac{3}{2}

Explanation

Solution

Here, we will use the basic identities of the trigonometric functions. Firstly we will take the LHS of the equation and solve it. So we will apply the properties of the trigonometric function for the simplification of the LHS of the equation and by solving the simplified equation we will get the LHS equals to RHS.

Complete step by step solution:
Firstly we will take the LHS of the equation.
sin4π8+sin43π8+sin45π8sin47π8{\sin ^4}\dfrac{\pi }{8} + {\sin ^4}\dfrac{{3\pi }}{8} + {\sin ^4}\dfrac{{5\pi }}{8}{\sin ^4}\dfrac{{7\pi }}{8}
We will use the trigonometry property i.e. cos(π2θ)=sinθ\cos \left( {\dfrac{\pi }{2} - \theta } \right) = \sin \theta . But we will apply this property for the last two terms only. Therefore, we get
sin4π8+sin43π8+cos4(π25π8)+cos4(π27π8){\sin ^4}\dfrac{\pi }{8} + {\sin ^4}\dfrac{{3\pi }}{8} + {\cos ^4}\left( {\dfrac{\pi }{2} - \dfrac{{5\pi }}{8}} \right) + {\cos ^4}\left( {\dfrac{\pi }{2} - \dfrac{{7\pi }}{8}} \right)
sin4π8+sin43π8+cos4(π2)+cos4(3π8){\sin ^4}\dfrac{\pi }{8} + {\sin ^4}\dfrac{{3\pi }}{8} + {\cos ^4}\left( { - \dfrac{\pi }{2}} \right) + {\cos ^4}\left( { - \dfrac{{3\pi }}{8}} \right)
We know that cos(θ)=sinθ\cos \left( { - \theta } \right) = \sin \theta . Therefore, we get
sin4π8+sin43π8+cos4(π2)+cos4(3π8){\sin ^4}\dfrac{\pi }{8} + {\sin ^4}\dfrac{{3\pi }}{8} + {\cos ^4}\left( {\dfrac{\pi }{2}} \right) + {\cos ^4}\left( {\dfrac{{3\pi }}{8}} \right)
We know that sin2θ+cos2θ=1{\sin ^2}\theta + {\cos ^2}\theta = 1.
Now by squaring both side of the equation we get sin4θ+cos4θ+2sin2θcos2θ=1{\sin ^4}\theta + {\cos ^4}\theta + 2{\sin ^2}\theta {\cos ^2}\theta = 1.
Therefore sin4θ+cos4θ=12sin2θcos2θ{\sin ^4}\theta + {\cos ^4}\theta = 1 - 2{\sin ^2}\theta {\cos ^2}\theta . So, by applying this we get
(12sin2π8cos2π8)+(12sin23π8cos23π8)\Rightarrow \left( {1 - 2{{\sin }^2}\dfrac{\pi }{8}{{\cos }^2}\dfrac{\pi }{8}} \right) + \left( {1 - 2{{\sin }^2}\dfrac{{3\pi }}{8}{{\cos }^2}\dfrac{{3\pi }}{8}} \right)
22sin2π8cos2π82sin23π8cos23π8\Rightarrow 2 - 2{\sin ^2}\dfrac{\pi }{8}{\cos ^2}\dfrac{\pi }{8} - 2{\sin ^2}\dfrac{{3\pi }}{8}{\cos ^2}\dfrac{{3\pi }}{8}
212×4sin2π8cos2π812×4sin23π8cos23π8\Rightarrow 2 - \dfrac{1}{2} \times 4{\sin ^2}\dfrac{\pi }{8}{\cos ^2}\dfrac{\pi }{8} - \dfrac{1}{2} \times 4{\sin ^2}\dfrac{{3\pi }}{8}{\cos ^2}\dfrac{{3\pi }}{8}
We know that 2sinθcosθ=sin2θ2\sin \theta {\rm{ }}\cos \theta = \sin {\rm{ }}2\theta . Therefore by applying this property in the equation we get
212sin22π812sin22×3π8\Rightarrow 2 - \dfrac{1}{2}{\sin ^2}\dfrac{{2\pi }}{8} - \dfrac{1}{2}{\sin ^2}\dfrac{{2 \times 3\pi }}{8}
212sin2π412sin23π4\Rightarrow 2 - \dfrac{1}{2}{\sin ^2}\dfrac{\pi }{4} - \dfrac{1}{2}{\sin ^2}\dfrac{{3\pi }}{4}
We know that the value of sin2π4=12{\sin ^2}\dfrac{\pi }{4} = \dfrac{1}{2} and sin23π4=12{\sin ^2}\dfrac{{3\pi }}{4} = \dfrac{1}{2}. Therefore, we get
212×1212×12=21414=212=412=32\Rightarrow 2 - \dfrac{1}{2} \times \dfrac{1}{2} - \dfrac{1}{2} \times \dfrac{1}{2} = 2 - \dfrac{1}{4} - \dfrac{1}{4} = 2 - \dfrac{1}{2} = \dfrac{{4 - 1}}{2} = \dfrac{3}{2}
Therefore we get the value of LHS of the equation as 32\dfrac{3}{2}.
Hence LHS is equal to the RHS of the equation.
Hence proved.

Note:
We must remember the different properties of the trigonometric function and also in which quadrant which function is positive or negative as in the first quadrant all the functions i.e. sin, cos, tan, cot, sec, cosec is positive. In the second quadrant, only the sine and cosecant function are positive and all the other functions are negative. In the third quadrant, only tan and cot function is positive and in the fourth quadrant, only cos and sec function is positive. Also, we keep in mind the basic properties of the trigonometric functions and with the help of this concept, this question can be easily solved.
Properties used in the question: 2sinθcosθ=sin2θ2\sin \theta {\rm{ }}\cos \theta = \sin {\rm{ }}2\theta andcos2θsin2θ=cos2θ{\cos ^2}\theta - {\sin ^2}\theta = \cos {\rm{ }}2\theta