Question
Mathematics Question on Trigonometric Functions of Sum and Difference of Two Angles
Prove that sin3x+sin2x–sinx=4sinxcos2xcos23x
Answer
L.H.S. = sin3x+sin2x-sinx
=sin3x+(sin2x-sinx)
=sin3x+[2cos(22x+x)sin(22x−x)][sinA−sinB=2cos(2A+B)sin(2A−B)]
=sin3x+[2cos(23x)sin(2x)]
sin3x+2cos23xsin2x
=2sin23x.cos23x+2cos23xsin2x[sin2A=2sinA.cosB]
=2cos(23x)[(23x)+sin(2x)]
=2cos(23x)[2sin2(23x)+(2x)cos2(23x)−(2x)][sinA+sinB=2sin(2A+B)cos(2A−B)]
=2cos(23x).2sinxcos(2x)
=4sinxcos(2x)cos(23x)=R.H.S.