Solveeit Logo

Question

Mathematics Question on Trigonometric Functions of Sum and Difference of Two Angles

Prove that sin3x+sin2xsinx=4sinxcosx2cos3x2sin 3x + sin 2x – sin x = 4sin \,x cos\, \frac{x}{2} cos \frac{3x}{2}

Answer

L.H.S. = sin3x+sin2x-sinx

=sin3x+(sin2x-sinx)

=sin3x+[2cos(2x+x2)sin(2xx2)][sinAsinB=2cos(A+B2)sin(AB2)]=sin3x+[2cos(\frac{2x+x}{2})sin(\frac{2x-x}{2})]\,\,\,[sinA-sinB=2cos(\frac{A+B}{2})sin(\frac{A-B}{2})]

=sin3x+[2cos(3x2)sin(x2)]=sin3x+[2cos(\frac{3x}{2})sin(\frac{x}{2})]

sin3x+2cos3x2sinx2sin3x+2cos\frac{3x}{2}sin\frac{x}{2}

=2sin3x2.cos3x2+2cos3x2sinx2[sin2A=2sinA.cosB]=2sin\frac{3x}{2}.cos\frac{3x}{2}+2cos\frac{3x}{2}sin\frac{x}{2}\,\,\,[sin2A=2sinA.cosB]

=2cos(3x2)[(3x2)+sin(x2)]=2cos(\frac{3x}{2})[(\frac{3x}{2})+sin(\frac{x}{2})]

=2cos(3x2)[2sin(3x2)+(x2)2cos(3x2)(x2)2][sinA+sinB=2sin(A+B2)cos(AB2)]=2cos(\frac{3x}{2})[2sin\\{\frac{{(\frac{3x}{2})+(\frac{x}{2}}{})}{2}\\}cos\\{\frac{{(\frac{3x}{2})-(\frac{x}{2})}}{2}\\}]\,[sinA+sinB=2sin(\frac{A+B}{2})cos(\frac{A-B}{2})]

=2cos(3x2).2sinxcos(x2)=2cos(\frac{3x}{2}).2sin\,x\,cos(\frac{x}{2})

=4sinxcos(x2)cos(3x2)=R.H.S.=4sinxcos(\frac{x}{2})cos(\frac{3x}{2})=R.H.S.