Solveeit Logo

Question

Question: Prove that \(\sin 3x+\sin 2x-\sin x=4\sin x\cos \dfrac{x}{2}\cos \dfrac{3x}{2}\)....

Prove that sin3x+sin2xsinx=4sinxcosx2cos3x2\sin 3x+\sin 2x-\sin x=4\sin x\cos \dfrac{x}{2}\cos \dfrac{3x}{2}.

Explanation

Solution

Hint: Use the trigonometric formulas of (sinAsinB)\left( \sin A-\sin B \right), value of sin2x\sin 2xto solve the expression. Take LHS of the expression and prove that the simplified expression of LHS is equal to RHS.

Complete step-by-step solution -
Given the expression, sin3x+sin2xsinx=4sinxcosx2cos3x2\sin 3x+\sin 2x-\sin x=4\sin x\cos \dfrac{x}{2}\cos \dfrac{3x}{2}.
Let us first take the LHS.
LHS=sin3x+sin2xsinxLHS =\sin 3x +\sin 2x-\sin x.
We know the formula, sinAsinB=2cos(A+B2)sin(AB2)\sin A-\sin B=2\cos \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{A-B}{2} \right)
Let us put, A = 2x and B = x.
sin3x+(sin2xsinx)=sin3x+2cos(2x+x2)sin(2xx2)\therefore \sin 3x+\left( \sin 2x-\sin x \right)=\sin 3x+2\cos \left( \dfrac{2x+x}{2} \right)\sin \left( \dfrac{2x-x}{2} \right)
=sin3x+2cos(3x2)sin(x2)=\sin 3x+2\cos \left( \dfrac{3x}{2} \right)\sin \left( \dfrac{x}{2} \right)
We know that, sin2x=2sinx.cosx\sin 2x=2\sin x.\cos x.
Similarly, sinx=2sinx2cosx2\sin x=2\sin \dfrac{x}{2}\cos \dfrac{x}{2}.
Now let us replace x with 3x.
sin3x=2sin(3x2)cos(3x2) LHS=2sin(3x2)cos(3x2)+2cos(3x2)sin(x2) \begin{aligned} & \therefore \sin 3x=2\sin \left( \dfrac{3x}{2} \right)\cos \left( \dfrac{3x}{2} \right) \\\ & \therefore LHS=2\sin \left( \dfrac{3x}{2} \right)\cos \left( \dfrac{3x}{2} \right)+2\cos \left( \dfrac{3x}{2} \right)\sin \left( \dfrac{x}{2} \right) \\\ \end{aligned}
=2cos(3x2)[sin(3x2)+sin(x2)]=2\cos \left( \dfrac{3x}{2} \right)\left[ \sin \left( \dfrac{3x}{2} \right)+\sin \left( \dfrac{x}{2} \right) \right]
We know that, sinA+sinB=2sin(A+B2)cos(AB2)\sin A+\sin B=2\sin \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right).
Put, A=3x2A=\dfrac{3x}{2}and B=x2B=\dfrac{x}{2}.
LHS=2cos(3x2)[2sin(3x2+x22)cos(3x2x22)]\therefore LHS=2\cos \left( \dfrac{3x}{2} \right)\left[ 2\sin \left( \dfrac{\dfrac{3x}{2}+\dfrac{x}{2}}{2} \right)\cos \left( \dfrac{\dfrac{3x}{2}-\dfrac{x}{2}}{2} \right) \right]
=2cos(3x2)[2sin(4x4)cos(2x4)] =2cos(3x2)[2sinxcos(x2)] =4cos(3x2)sinxcosx2 =4sinxcos(x2)cos(3x2) \begin{aligned} & =2\cos \left( \dfrac{3x}{2} \right)\left[ 2\sin \left( \dfrac{4x}{4} \right)\cos \left( \dfrac{2x}{4} \right) \right] \\\ & =2\cos \left( \dfrac{3x}{2} \right)\left[ 2\sin x\cos \left( \dfrac{x}{2} \right) \right] \\\ & =4\cos \left( \dfrac{3x}{2} \right)\sin x\cos \dfrac{x}{2} \\\ & =4\sin x\cos \left( \dfrac{x}{2} \right)\cos \left( \dfrac{3x}{2} \right) \\\ \end{aligned}
Hence, we proved that LHS = RHS.
Here from the question, RHS=4cos(x2)sinxcos(3x2)RHS=4\cos \left( \dfrac{x}{2} \right)\sin x\cos \left( \dfrac{3x}{2} \right).
Thus, we have proved.

Note: Remember the trigonometric formulae and identities to solve problems like these. Take (sin2xsinx)\left( \sin 2x-\sin x \right)first because you will get a simplified expression and will be able to solve the expression more easily. We have used formulas like (sinAsinB)\left( \sin A-\sin B \right), sin2x,(sinA+sinB)\sin 2x,\left( \sin A+\sin B \right) to solve the expression. Therefore, remember the formulae.