Question
Question: Prove that \(\sin 3x+\sin 2x-\sin x=4\sin x\cos \dfrac{x}{2}\cos \dfrac{3x}{2}\)....
Prove that sin3x+sin2x−sinx=4sinxcos2xcos23x.
Solution
Hint: Use the trigonometric formulas of (sinA−sinB), value of sin2xto solve the expression. Take LHS of the expression and prove that the simplified expression of LHS is equal to RHS.
Complete step-by-step solution -
Given the expression, sin3x+sin2x−sinx=4sinxcos2xcos23x.
Let us first take the LHS.
LHS=sin3x+sin2x−sinx.
We know the formula, sinA−sinB=2cos(2A+B)sin(2A−B)
Let us put, A = 2x and B = x.
∴sin3x+(sin2x−sinx)=sin3x+2cos(22x+x)sin(22x−x)
=sin3x+2cos(23x)sin(2x)
We know that, sin2x=2sinx.cosx.
Similarly, sinx=2sin2xcos2x.
Now let us replace x with 3x.
∴sin3x=2sin(23x)cos(23x)∴LHS=2sin(23x)cos(23x)+2cos(23x)sin(2x)
=2cos(23x)[sin(23x)+sin(2x)]
We know that, sinA+sinB=2sin(2A+B)cos(2A−B).
Put, A=23xand B=2x.
∴LHS=2cos(23x)2sin223x+2xcos223x−2x
=2cos(23x)[2sin(44x)cos(42x)]=2cos(23x)[2sinxcos(2x)]=4cos(23x)sinxcos2x=4sinxcos(2x)cos(23x)
Hence, we proved that LHS = RHS.
Here from the question, RHS=4cos(2x)sinxcos(23x).
Thus, we have proved.
Note: Remember the trigonometric formulae and identities to solve problems like these. Take (sin2x−sinx)first because you will get a simplified expression and will be able to solve the expression more easily. We have used formulas like (sinA−sinB), sin2x,(sinA+sinB) to solve the expression. Therefore, remember the formulae.