Question
Question: Prove that: \(\sin 3x + \sin 2x - \sin x = 4\sin x\cos \dfrac{x}{2}\cos \dfrac{{3x}}{2}\)...
Prove that: sin3x+sin2x−sinx=4sinxcos2xcos23x
Solution
For a question like this we approach the solution by simplifying anyone the side and proving it equal to the other side, here also we will simplify the left-hand side using some of the trigonometric formulas like
sinA−sinB=2sin(2A−B)cos(2A+B)
cosA+cosB=2cos(2A+B)cos(2A−B)
sin2A=2sinAcosA
We simplify in such a manner that it results in the equivalent value to the other side expression.
Complete step by step Answer:
Given data:sin3x+sin2x−sinx=4sinxcos2xcos23x
On simplifying the left-hand side
⇒sin3x+sin2x−sinx
On rearranging we get,
⇒sin3x−sinx+sin2x
Using the formula sinA−sinB=2sin(2A−B)cos(2A+B)
⇒2sin(23x−x)cos(23x+x)+sin2x
On simplification we get,
⇒2sin(x)cos(2x)+sin2x
Now using the formulasin2A=2sinAcosA
⇒2sin(x)cos(2x)+2sinxcosx
Taking 2sinx common from both the terms,
⇒2sinx(cos2x+cosx)
Now using the formulacosA+cosB=2cos(2A+B)cos(2A−B), we get,
⇒2sinx[2cos(22x+x)cos(22x−x)]
⇒2×2cos(23x)cos(2x)sinx
⇒4sinxcos2xcos23x, which is equal to the left-hand side in the given equation
Since the expression in the Left-hand sideis equal to the expression in the right-hand side
We have proved the given equation.
Note: An alternative method for the solution of this question can be
On simplifying the right-hand side
⇒4sinxcos2xcos23x
⇒2sinx[2cos(22x−x)cos(22x+x)]
Using the formula2cos(2A+B)cos(2A−B)=cosA+cosB
⇒2sinx[cos2x+cosx]
On simplifying the brackets
⇒2sinxcos2x+2sinxcosx
Now using the formula 2sinAcosA=sin2A
⇒2sinxcos2x+sin2x
⇒2sin(23x−x)cos(23x+x)+sin2x
On simplifying using the formula 2sin(2A−B)cos(2A+B)=sinA−sinB
⇒[sin3x−sinx]+sin2x
⇒sin3x+sin2x−sinx, which is equal to the left-hand side in the given equation
Since the expression in the Left-hand side is equal to the expression in the right-hand side
We have proved the given equation