Solveeit Logo

Question

Question: Prove that: \(\sin 3x + \sin 2x - \sin x = 4\sin x\cos \dfrac{x}{2}\cos \dfrac{{3x}}{2}\)...

Prove that: sin3x+sin2xsinx=4sinxcosx2cos3x2\sin 3x + \sin 2x - \sin x = 4\sin x\cos \dfrac{x}{2}\cos \dfrac{{3x}}{2}

Explanation

Solution

For a question like this we approach the solution by simplifying anyone the side and proving it equal to the other side, here also we will simplify the left-hand side using some of the trigonometric formulas like
sinAsinB=2sin(AB2)cos(A+B2)\sin A - \sin B = 2\sin \left( {\dfrac{{A - B}}{2}} \right)\cos \left( {\dfrac{{A + B}}{2}} \right)
cosA+cosB=2cos(A+B2)cos(AB2)\cos A + \cos B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)
sin2A=2sinAcosA\sin 2A = 2\sin A\cos A
We simplify in such a manner that it results in the equivalent value to the other side expression.

Complete step by step Answer:

Given data:sin3x+sin2xsinx=4sinxcosx2cos3x2\sin 3x + \sin 2x - \sin x = 4\sin x\cos \dfrac{x}{2}\cos \dfrac{{3x}}{2}
On simplifying the left-hand side
sin3x+sin2xsinx\Rightarrow \sin 3x + \sin 2x - \sin x
On rearranging we get,
sin3xsinx+sin2x\Rightarrow \sin 3x - \sin x + \sin 2x
Using the formula sinAsinB=2sin(AB2)cos(A+B2)\sin A - \sin B = 2\sin \left( {\dfrac{{A - B}}{2}} \right)\cos \left( {\dfrac{{A + B}}{2}} \right)
2sin(3xx2)cos(3x+x2)+sin2x\Rightarrow 2\sin \left( {\dfrac{{3x - x}}{2}} \right)\cos \left( {\dfrac{{3x + x}}{2}} \right) + \sin 2x
On simplification we get,
2sin(x)cos(2x)+sin2x\Rightarrow 2\sin \left( x \right)\cos \left( {2x} \right) + \sin 2x
Now using the formulasin2A=2sinAcosA\sin 2A = 2\sin A\cos A
2sin(x)cos(2x)+2sinxcosx\Rightarrow 2\sin \left( x \right)\cos \left( {2x} \right) + 2\sin x\cos x
Taking 2sinx common from both the terms,
2sinx(cos2x+cosx)\Rightarrow 2\sin x(\cos 2x + \cos x)
Now using the formulacosA+cosB=2cos(A+B2)cos(AB2)\cos A + \cos B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right), we get,
2sinx[2cos(2x+x2)cos(2xx2)]\Rightarrow 2\sin x\left[ {2\cos \left( {\dfrac{{2x + x}}{2}} \right)\cos \left( {\dfrac{{2x - x}}{2}} \right)} \right]
2×2cos(3x2)cos(x2)sinx\Rightarrow 2 \times 2\cos \left( {\dfrac{{3x}}{2}} \right)\cos \left( {\dfrac{x}{2}} \right)\sin x
4sinxcosx2cos3x2\Rightarrow 4\sin x\cos \dfrac{x}{2}\cos \dfrac{{3x}}{2}, which is equal to the left-hand side in the given equation
Since the expression in the Left-hand sideis equal to the expression in the right-hand side
We have proved the given equation.

Note: An alternative method for the solution of this question can be
On simplifying the right-hand side
4sinxcosx2cos3x2\Rightarrow 4\sin x\cos \dfrac{x}{2}\cos \dfrac{{3x}}{2}
2sinx[2cos(2xx2)cos(2x+x2)]\Rightarrow 2\sin x\left[ {2\cos \left( {\dfrac{{2x - x}}{2}} \right)\cos \left( {\dfrac{{2x + x}}{2}} \right)} \right]
Using the formula2cos(A+B2)cos(AB2)=cosA+cosB2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right) = \cos A + \cos B
2sinx[cos2x+cosx]\Rightarrow 2\sin x\left[ {\cos 2x + \cos x} \right]
On simplifying the brackets
2sinxcos2x+2sinxcosx\Rightarrow 2\sin x\cos 2x + 2\sin x\cos x
Now using the formula 2sinAcosA=sin2A2\sin A\cos A = \sin 2A
2sinxcos2x+sin2x\Rightarrow 2\sin x\cos 2x + \sin 2x
2sin(3xx2)cos(3x+x2)+sin2x\Rightarrow 2\sin \left( {\dfrac{{3x - x}}{2}} \right)\cos \left( {\dfrac{{3x + x}}{2}} \right) + \sin 2x
On simplifying using the formula 2sin(AB2)cos(A+B2)=sinAsinB2\sin \left( {\dfrac{{A - B}}{2}} \right)\cos \left( {\dfrac{{A + B}}{2}} \right) = \sin A - \sin B
[sin3xsinx]+sin2x\Rightarrow [\sin 3x - \sin x] + \sin 2x
sin3x+sin2xsinx\Rightarrow \sin 3x + \sin 2x - \sin x, which is equal to the left-hand side in the given equation
Since the expression in the Left-hand side is equal to the expression in the right-hand side
We have proved the given equation