Question
Question: Prove that: \({\sin ^3}x + {\cos ^3}x = (\sin x + \cos x)(1 - \sin x\cos x)\)....
Prove that: sin3x+cos3x=(sinx+cosx)(1−sinxcosx).
Solution
In this question, we are given an equation in which we are asked to prove that LHS = RHS. Start with expanding the LHS of the question. Use the cubic formula and simplify the equation. After a step, you will notice sin2x+cos2x in the second part of the formulae. Use trigonometric identity to simplify it and it will prove LHS = RHS.
Formula used: 1) a3+b3=(a+b)(a2−ab+b2)
2) sin2x+cos2x=1
Complete step-by-step answer:
We are given an equation in which we have to prove that LHS = RHS.
⇒sin3x+cos3x=(sinx+cosx)(1−sinxcosx)
The LHS of the given equation resembles (a3+b3). So, we will use the formula a3+b3=(a+b)(a2−ab+b2)
Expanding the Left Hand Side (LHS),
⇒sin3x+cos3x=(sinx+cosx)(sin2x−sinxcosx+cos2x)
Rearranging the terms,
⇒sin3x+cos3x=(sinx+cosx)(sin2x+cos2x−sinxcosx)
Now, we know that sin2x+cos2x=1. Substituting this is the above equation,
⇒sin3x+cos3x=(sinx+cosx)(1−sinxcosx)= RHS
Therefore, LHS=RHS.
Hence, proved.
Note: We can solve this problem in another way. Here below is an alternate method of solution for this problem.
If you do not remember the cubic formula, then you can use the following method-
⇒sin3x+cos3x=(sinx+cosx)(sin2x−sinxcosx+cos2x) (given)
We can write x3 as xx2. Similarly, we will expand the LHS of the given equation.
⇒sin3x+cos3x=sinxsin2x+cosxcos2x
We know that sin2x+cos2x=1 ⇒ sin2x=1−cos2x and cos2x=1−sin2x
Using these two,
⇒sin3x+cos3x=sinx(1−cos2x)+cosx(1−sin2x)
Opening the brackets,
⇒sin3x+cos3x=sinx−sinxcos2x+cosx−cosxsin2x
Rearranging,
⇒sin3x+cos3x=(sinx+cosx)−sinxcosx(sinx+cosx)
Taking (sinx+cosx) common,
⇒sin3x+cos3x=(sinx+cosx)(1−sinxcosx)= RHS
Therefore, LHS = RHS.
sin3x+cos3x=(sinx+cosx)(1−sinxcosx)
Hence, proved.