Question
Mathematics Question on Trigonometric Functions of Sum and Difference of Two Angles
Prove that sin 2x+2sin 4x+sin6x=4cos2 x sin4x.
Answer
L.H.S. = sin 2x + 2 sin 4x + sin 6x
= sin 2x+2sin 4x+sin 6x
= [sin 2x + sin 6x] + 2 sin 4x
=[2sin(22x+6x)cos(22x−6x)]+2sin4x
[∵sinA+sinB=2sin(2A+B)cos(2A−B)]
= 2 sin 4x cos (-2x) + 2 sin 4x
= 2 sin 4x cos 2x+2 sin 4x
= 2 sin 4x (cos 2x+1)
= 2 sin 4x (2 cos2 x-1+1)
= 2 sin 4x (2 cos2 x)
= 4cos2 x sin 4x
= R.H.S.