Solveeit Logo

Question

Question: Prove that \( \sin 20^\circ \sin 70^\circ - \cos 20^\circ \cos 70^\circ = 0 \) ....

Prove that sin20sin70cos20cos70=0\sin 20^\circ \sin 70^\circ - \cos 20^\circ \cos 70^\circ = 0 .

Explanation

Solution

Hint : Here, we will use the formula that cos\cos over a+ba + b is equal to sum of product of cosa\cos a and cosb\cos b and product of sina- \sin a and sinb\sin b . Then substitute the value of cos\cos to get the required answer.

Complete step-by-step answer :
The given equation is sin20sin70cos20cos70=0\sin 20^\circ \sin 70^\circ - \cos 20^\circ \cos 70^\circ = 0 .
To prove the value of given equation, we will take left hand side term, that is,
sin20sin70cos20cos70\sin 20^\circ \sin 70^\circ - \cos 20^\circ \cos 70^\circ
Let us now use a known formula that is sinasinbcosacosb=cos(a+b)\sin a\sin b - \cos a\cos b = \cos \left( {a + b} \right) .
On substituting the values of a=20a = 20^\circ and b=70b = 70^\circ , we get,
sin(20)sin(70)cos(20)cos(70)=cos(20+70)\sin \left( {20^\circ } \right)\sin \left( {70^\circ } \right) - \cos \left( {20^\circ } \right)\cos \left( {70^\circ } \right) = \cos \left( {20^\circ + 70^\circ } \right)
Since, we can write cos(20+70)\cos \left( {20^\circ + 70^\circ } \right) in the form of,
cos(20+70)=cos90\cos \left( {20^\circ + 70^\circ } \right) = \cos 90^\circ
Now, we know the value for cos90\cos 90^\circ that is cos(90)=0\cos \left( {90} \right) = 0 .
So, we have taken the left hand side and proved that it is equal to the right hand side.
Hence, the value for the equation is sin20sin70cos20cos70=0\sin 20^\circ \sin 70^\circ - \cos 20^\circ \cos 70^\circ = 0 .

Note : Make sure the formula for the equation will not be same for all the equations. This can also be done by another method. If we take cos(20)\cos \left( {20} \right) as cos(9070)\cos \left( {90 - 70} \right) and take cos(70)\cos \left( {70} \right) as cos(9020)\cos \left( {90 - 20} \right) then by substituting and using the property that cos(90θ)\cos \left( {90 - \theta } \right) is equal to sin(θ)\sin \left( \theta \right) we can prove the equation.